Skip to main content
Log in

Low-Lying S-States of Two-Electron Systems

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The energies of the low-lying bound S-states of some two-electron systems (treating them as three-body systems) like negatively charged hydrogen, neutral helium, positively charged-lithium, beryllium, carbon, oxygen, neon, argon and negatively charged muonium and exotic positronium ions have been calculated employing hyperspherical harmonics expansion method. The matrix elements of two-body interactions involve Raynal–Revai coefficients which are particularly essential for the numerical solution of three-body Schrődinger equation when the two-body potentials are other from Coulomb or harmonic. The technique has been applied for to two-electron ions 1H (Z = 1) to 40Ar16+ (Z = 18), negatively charged-muonium Mu and exotic positronium ion Ps(e + e e ) considering purely Coulomb interaction. The available computer facility restricted reliable calculations up to 28 partial waves (i.e. K m  = 28) and energies for higher K m have been obtained by applying an extrapolation scheme suggested by Schneider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancarani, L.U., Rodriguez, K.V., Gasaneo, G.: Ground and excited states for exotic three-body atomic systems. In: EPJ Web of Conferences vol. 3, p. 02009 (2010); Correlated 1,3 S States for Coulomb Three-Body Systems. Int. J. Quantum Chem. (2011) (and references therein)

  2. Renat A.: Sultanov and Dennis Guster: Integral-differential equations approach to atomic three-body systems. J. Comput. Phys. 192(1), 231 (2003)

    Article  MATH  Google Scholar 

  3. Chen Z., Lin C.D.: Classification of Coulomb three-body systems in hyperspherical co-ordinates. Phys. Rev. A 42(1), 18 (1990)

    Article  ADS  Google Scholar 

  4. Yalcin Z., Simsek M.: Potential harmonic approximation in atomic three-body systems with Fues–Kratzer-type potential. Int. J. Quantum Chem. 88(6), 735 (2002)

    Article  Google Scholar 

  5. Kleindienst L., Emrich R.: The atomic three-body problem. An accurate lower bond calculation using wave functions with logarithmic terms. Int. J. Quantum Chem. 37(3), 257 (1990)

    Article  Google Scholar 

  6. Baklanov E.V.: Ground state of negative positronium ion within the framework of the non-relativistic three-body problem. Laser Phys. 7(4), 970 (1997)

    Google Scholar 

  7. Dodd L.R.: Faddeev approach to atomic three-body problems. Phys. Rev. A 9(4), 637 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  8. Harris Frank E.: Current studies of few-electron systems. Lecture Ser. Comput. comput. Sci. 1, 1 (2006)

    Google Scholar 

  9. Krivec R., Mandelzweig V.B.: Matrix elements of potentials in the correlation function hyperspherical harmonic method. Phys. Rev. A 42, 3779 (1990)

    Article  ADS  Google Scholar 

  10. Haftel H.I., Mandelzweig V.B.: A fast convergent hyperspherical expansion for the helium ground state. Phys. Lett. A 120(5), 232 (1987)

    Article  ADS  Google Scholar 

  11. Haftel H.I., Mandelzweig V.B.: Exact solution of coupled equations and the hyperspherical formalism: calculation of expectation values and wavefunctions of three Coulomb-bound particles. Ann. Phys. 150(1), 48 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Rodriguez K.V., Ancarani L.U., Gasaneo G., Mitnik D.M.: Ground state for two-electron and electron-muon three-body atomic systems. Int. J. Quantum Chem. 110(10), 1820 (2010)

    Google Scholar 

  13. Smith V.H. Jr., Frolov A.M.: On properties of the helium-muonic and helium-antiprotonic atoms. J. Phys. B 28(7), 1357 (1995)

    Article  ADS  Google Scholar 

  14. Frolov A.M., Smith V.H. Jr.: Bound state properties and astrophysical applications of negatively charged hydrogen ions. J. Chem. Phys. 119, 3130 (2003)

    Article  ADS  Google Scholar 

  15. Frolov A.M., Yeremin A.Y.J.: Ground bound states in two-electron systems with Z = 1. J. Phys. B 22, 1263 (1989)

    Article  ADS  Google Scholar 

  16. Frolov A.M., Smith V.H. Jr.: Universal variational expansion for three-body systems. J. Phys. B 28, L449 (1995)

    Article  ADS  Google Scholar 

  17. Frolov A.M.: Bound state properties of negatively charged hydrogen like ions. Phys. Rev. A 58, 4479 (1998)

    Article  ADS  Google Scholar 

  18. Frolov A.M.: Properties and hyperfine structure of helium-muonic atoms. Phys. Rev. A 61, 022509 (2000)

    Article  ADS  Google Scholar 

  19. Frolov A.M.: Calculations of the 1sμ2s e -electron-excited S(L = 0) states in helium-muonic atoms. Phys. Rev. A 65, 024701 (2002)

    Article  ADS  Google Scholar 

  20. Frolov A.M.: Lowest order QED corrections for the H and Mu ions. Phys. Lett. A 345, 173 (2005)

    Article  MATH  ADS  Google Scholar 

  21. Frolov A.M.: Bound state properties and hyperfine splitting in the S(L = 0)-states of the lithium-muonic systems. Phys. Lett. A 353, 60 (2006)

    Article  ADS  Google Scholar 

  22. Frolov A.M., Smith V.H. Jr.: Exponential representation in the Coulomb three-body problem. J. Phys. B 37, 2917 (2004)

    Article  ADS  Google Scholar 

  23. Thakkar A.J., Koga T.: Ground-state energies for the helium isoelectronic series. Phys. Rev. A 50, 854 (1994)

    Article  ADS  Google Scholar 

  24. Goldman S.P.: Uncoupling Correlated Calculations in atomic physics: very high accuracy and ease. Phys. Rev. A 57, R677 (1998)

    Article  ADS  Google Scholar 

  25. Korobov R.: Bethe logarithm for the helium atom. Phys. Rev. A 69, 054501 (2004)

    Article  ADS  Google Scholar 

  26. Drake G.W.F.: In: (eds) Units and Constants. Springer Handbook of Atomic, Molecular, and Optical Physics, pp. 1. Springer, Berlin (2005)

  27. Hylleraas E.A., Ore A.: Electron affinity of positronium. Phys. Rev. 71, 491 (1947)

    Article  MATH  ADS  Google Scholar 

  28. Hill R.N.: Proof that the H ion has only one bound state. Details and extension to finite nuclear mass. J. Math. Phys. 18, 2316 (1977)

    Article  ADS  Google Scholar 

  29. Mohr P.J., Taylor B.N.: The fundamental physical constants—recommended values of the basic constants and conversion values, from the 1998 adjustment. Phys. Today 55(8), BG6 (2002)

    Google Scholar 

  30. Drake G.W.F., Cassar M.M., Nistor R.A.: Ground-state energies for helium, H, and Ps. Phys. Rev. A 65, 054501 (2002)

    Article  ADS  Google Scholar 

  31. Frolov A.M.: Variational expansions for the three-body Coulomb problem. Zh. Eksp. Teor. Fiz 92, 1959 (1987)

    Google Scholar 

  32. Mills A.P. Jr.: Observation of the positronium negative ion. Phys. Rev. Lett. 46, 717 (1981)

    Article  ADS  Google Scholar 

  33. Mills A.P. Jr.: Measurement of the decay rate of the positronium negative ion. Phys. Rev. Lett. 50, 671 (1983)

    Article  ADS  Google Scholar 

  34. Ho Y.K.: Autoionization states of the positronium negative ion. Phys. Rev. A 19, 2347 (1979)

    Article  ADS  Google Scholar 

  35. Ho Y.K.: Variational calculation of ground-state energy of positronium negative ions. Phys. Rev. A 48, 4780 (1993)

    Article  ADS  Google Scholar 

  36. Wen-Fang X.I.E.: Feature of a confined positronium negative ion by a spherical parabolic potential. Commun. Theor. Phys. 47, 547 (2007)

    Article  ADS  Google Scholar 

  37. Kubiček K., Bruhns H., Braun J., López-Urrutia J.R.C., Ullrich J.: Two-loop QED contributions tests with mid-Z He-like ions. J. Phys. Conf. Ser. 163(01), 01 (2007)

    Google Scholar 

  38. Kondrashev S., Mescheryakov N., Sharkov B., Shumshurov A., Khomenko S., Makarov K., Satov Y., Smakovskii Y.: Production of He-like light and medium mass ions in laser ion source. Rev. Sci. Instrum. 71, 1409 (2000)

    Article  ADS  Google Scholar 

  39. Abdul Khan Md.A., Dutta S.K., Das T.K.: Computation of Raynal–Revai coefficients for the hyperspherical approach to a three-body system. FIZIKA B (Zagreb) 8(4), 469 (1999)

    ADS  Google Scholar 

  40. Khan Md.A.: Hyperspherical three-body calculation for exotic atoms. Few-Body Syst. 52, 53 (2012)

    Article  ADS  Google Scholar 

  41. Lin, C.D.: Hyperspherical coordinate approach to atomic and Coulombic three-body systems. Phys. Rep. 257(1), 1 (1995)

    Google Scholar 

  42. Das T.K., Chattopadhyay R., Mukherjee P.K.: Hyperspherical harmonics approach to the ground and excited states of two electron atoms. Phys. Rev. A 50, 3521 (1994)

    Article  ADS  Google Scholar 

  43. Chattopadhyay R., Das T.K., Mukherjee P.K.: Hyperspherical harmonics expansion of the ground state of the Ps ion. Phys. Scr. 54, 601 (1996)

    Article  ADS  Google Scholar 

  44. Chattopadhyay R., Das T.K.: Adiabatic approximation in atomic three body systems. Phys. Rev. A 56, 1281 (1997)

    Article  ADS  Google Scholar 

  45. Das T.K., Coelho H.T., Fabre de la Ripelle M.: Contribution of three body force to the trinucleon problem by an essentially exact calculation. Phys. Rev. C 26, 2288 (1982)

    Article  ADS  Google Scholar 

  46. Coelho H.T., Das T.K., Fabre de la Ripelle M.: Effect of two pion exchange three nucleon forces on trinucleon systems. Phys. Lett. 109, 255 (1982)

    Article  Google Scholar 

  47. Das T.K., Coelho H.T.: Trinucleon Coulomb energy with inclusion of three body force. Phys. Rev. C (Rapid comm) 26, 754 (1982)

    Article  ADS  Google Scholar 

  48. Das T.K., Coelho H.T.: Dependence of trinucleon observables on three body force. Phys. Rev. C 26, 697 (1982)

    Article  ADS  Google Scholar 

  49. Coelho H.T., Das T.K., Robilotta M.: Two pion exchange three nucleon force and the 3H and 3He nuclei. Phys. Rev. C 28, 1812 (1983)

    Article  ADS  Google Scholar 

  50. De T.B., Das T.K.: Calculation of geometrical structure coefficients for the trinucleon system with central and tensor interactions. Phys. Rev. C 36, 402 (1987)

    Article  ADS  Google Scholar 

  51. Brito V.P., Coelho H.T., Das T.K.: Adiabatic approximation in few body molecular and nuclear systems. Phys. Rev. A 40, 3346 (1989)

    Article  ADS  Google Scholar 

  52. Ghosh A.K., Das T.K.: Triton asymptotic normalization constants by the hyperspherical harmonics expansion method. Phys. Rev. C 42, 1249 (1990)

    Article  ADS  Google Scholar 

  53. Das T.K., Coelho H.T., Torreao J.R.A.: Hyperspherical harmonics approach for the trinucleon system with hard core potential. Phys. Rev. C 45, 2640 (1992)

    Article  ADS  Google Scholar 

  54. Bhattacharya S., Das T.K., Kanta K.P., Ghosh A.K.: Convergence of triton asymptotic wave function for hyperspherical harmonics expansion with two nucleon Reid soft core potential. Phys. Rev. C 50, 2228 (1994)

    Article  ADS  Google Scholar 

  55. Yakhelef, A., Timofeyuk, N., Al-Khalili, J.S.,Thompson, I.J.: Three-body spectrum of 18 C and its relevance to r-process nucleosynthesis. Few-Body Syst. 47, 213 (2010)

    Google Scholar 

  56. Khan Md.A., Dutta S.K., Das T.K., Pal M.K.: Hyperspherical three-body calculation for neutron drip line nuclei. Phys. G Nucl. Part. Phys. 24, 1519 (1998)

    Article  ADS  Google Scholar 

  57. Khan Md.A., Das T.K., Chakrabarti B.: Study of the excited state of double-Λ hypernuclei byhyperspherical supersymmetric approach. Int. J. Mod. Phys. E 10(2), 107 (2001)

    Article  ADS  Google Scholar 

  58. Khan Md.A., Das T.K.: Study of ΛΛ dynamics and ground state structure of low and medium mass double Λ hypernuclei. Pramana J. Phys. 56(1), 57 (2001)

    Article  ADS  Google Scholar 

  59. Khan Md.A., Das T.K.: Investigation of halo structure of 6He by hypersphericalthree-body method. Pramana J. Phys. 57(4), 701 (2001)

    Article  ADS  Google Scholar 

  60. Dutta S.K., Khan Md.A., Das T.K., Chakrabarti B.: Calculation of resonances in weakly bound systems. Int. J. Mod. Phys. E 13(4), 811 (2004)

    Article  ADS  Google Scholar 

  61. Dutta S.K., Das T.K., Khan Md.A., Chakrabarti B.: Resonances in A = 6 nuclei: Use of supersymmetric quantum mechanics. Few-Body Syst. 35, 33 (2004)

    Article  ADS  Google Scholar 

  62. Dutta S.K., Das T.K., Khan Md.A., Chakrabarti B.: Computation of 2+ resonance in 6He: bound state in the continuum. J. Phys. G Nucl. Part. Phys. 29, 2411 (2003)

    Article  ADS  Google Scholar 

  63. Khan M.A, Das T.K.: Investigation of exotic 6 ΛΛHe hypernuclei by the hyperspherical three-body method. FIZIKA B 9(2), 55 (2000)

    ADS  Google Scholar 

  64. Khan Md.A., Das T.K.: Investigation of ΛΛ dynamics and effective ΛN interaction in low and medium mass hypernuclei. FIZIKA B 10(2), 83 (2001)

    ADS  Google Scholar 

  65. Richard J.M.: The non-relativistic three-body problem for baryons. Phys. Rep. 212, 1 (1992)

    Article  ADS  Google Scholar 

  66. Leeb H., Fiedeldey H., Gavin E.G.O., Sofianos S.A., Lipperheide R.: Quark quark potentials from the inversion of baryon spectra and its application to the Roper resonance. Few Body Syst. 12, 55 (1992)

    Article  ADS  Google Scholar 

  67. Barnea N., Novoselsky A.: Construction of hyperspherical functions symmetrized with respect to the orthogonal and symmetric groups. Ann. Phys. (N. Y.) 256, 192 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  68. Watanabe S., Hosoda Y., Kato D.: Hyperspherical close-coupling method extended to the two-electron continuum region: test on the s-wave model for e-H scattering. J. Phys. B 26, L495 (1993)

    Article  ADS  Google Scholar 

  69. Raynal J., Revai J.: Transformation coefficients in the hyperspherical approach to the three-body problem. Il Nuo. Cim. A 68(4), 612 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  70. Youping G., Fuqing L., Lim T.K.: Program to calculate Raynal–Revai coefficients of a three-body system in two or three dimensions. Comput. Phys. Commun. 47, 149 (1987)

    Article  ADS  Google Scholar 

  71. Ballot J.L., Fabredela Ripelle M.: Application of the hyperspherical formalism to the trinucleon bound state problems. Ann. Phys. (N. Y.) 127, 62 (1980)

    Article  ADS  Google Scholar 

  72. Cohen E.R., Taylor B.N.: CODATA recommended values of the fundamental physical constants. Phys. Today 51(8), BG9 (1998)

    Article  Google Scholar 

  73. Cohen E.R., Taylor B.N.: CODATA recommended values of the fundamental physical constants. Phys. Today 53(8), BG11 (2000)

    Google Scholar 

  74. Beiner M., Fabredela Ripelle M.: Convergence of the hyperspherical formalism applied to the trinucleons. Lett. Nuvo Cim. 1(14), 584 (1971)

    Article  Google Scholar 

  75. Schneider T.R.: Convergence of generalized spherical harmonic expansion in the three-nucleon bound state. Phys. Lett. 40(4), 439 (1972)

    Article  Google Scholar 

  76. Johnson B.R.: The renormalized Numerov method applied to calculating bound states of the coupled-channel Schroedinger equation. J. Chem. Phys. 69, 4678 (1978)

    Article  ADS  Google Scholar 

  77. Accad Y., Pekeris C.L., Schiff B.: Two-electron S and P term values with smooth Z dependence. Phys. Rev. A 11(4), 1479 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abdul Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.A. Low-Lying S-States of Two-Electron Systems. Few-Body Syst 55, 1125–1139 (2014). https://doi.org/10.1007/s00601-014-0881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0881-8

Keywords

Navigation