Skip to main content
Log in

From Bethe–Salpeter Wave functions to Generalised Parton Distributions

  • Review
  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We review recent works on the modelling of generalised parton distributions within the Dyson–Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. Specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward–Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mueller, D., Robaschik, D., Geyer, B., Dittes, F.M., Hořeǰsi, J.: Wave functions, evolution equations and evolution kernels from light ray operators of QCD. Fortschr. Phys. 42, 101–141 (1994)

    Article  Google Scholar 

  2. Ji, X.-D.: Deeply virtual Compton scattering. Phys. Rev. D 55, 7114–7125 (1997)

    Article  ADS  Google Scholar 

  3. Radyushkin, A.V.: Nonforward parton distributions. Phys. Rev. D 56, 5524–5557 (1997)

    Article  ADS  Google Scholar 

  4. Ji, X.-D.: Off forward parton distributions. J. Phys. G24, 1181–1205 (1998)

    Article  ADS  Google Scholar 

  5. Goeke, K., Polyakov, M.V., Vanderhaeghen, M.: Hard exclusive reactions and the structure of hadrons. Prog. Part. Nucl. Phys. 47, 401–515 (2001)

    Article  ADS  Google Scholar 

  6. Diehl, M.: Generalized parton distributions. Phys. Rep. 388, 41–277 (2003)

    Article  ADS  Google Scholar 

  7. Belitsky, A.V., Radyushkin, A.V.: Unraveling hadron structure with generalized parton distributions. Phys. Rep. 418, 1–387 (2005)

    Article  ADS  Google Scholar 

  8. Boffi, S., Pasquini, B.: Generalized parton distributions and the structure of the nucleon. Riv. Nuovo Cim. 30, 387 (2007)

    ADS  Google Scholar 

  9. Guidal, M., Moutarde, H., Vanderhaeghen, M.: Generalized parton distributions in the valence region from deeply virtual Compton scattering. Rep. Prog. Phys. 76, 066202 (2013)

    Article  ADS  Google Scholar 

  10. Defurne, M., et al.: E00–110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV. Phys. Rev. C 92(5), 055202 (2015). doi:10.1103/PhysRevC.92.055202

    Article  ADS  Google Scholar 

  11. Jo, H.S., et al.: Cross sections for the exclusive photon electroproduction on the proton and generalized parton distributions. Phys. Rev. Lett. 115(21), 212003 (2015). doi:10.1103/PhysRevLett.115.212003

    Article  ADS  Google Scholar 

  12. Sandacz, A.: The GPD program at COMPASS. In: 12th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2015) Vail, Colorado, USA, May 19–24 (2015)

  13. Accardi, A., et al.: Electron Ion Collider: the next QCD frontier-understanding the glue that binds us all (2012). arXiv:hep-ph/1212.1701

  14. Braun, V.M., Manashov, A.N., Pirnay, B.: Finite-t and target mass corrections to DVCS on a scalar target. Phys. Rev. D 86, 014003 (2012)

    Article  ADS  Google Scholar 

  15. Braun, V.M., Manashov, A.N., Pirnay, B.: Finite-t and target mass corrections to deeply virtual Compton scattering. Phys. Rev. Lett. 109, 242001 (2012)

    Article  ADS  Google Scholar 

  16. Guidal, M., Polyakov, M.V., Radyushkin, A.V., Vanderhaeghen, M.: Nucleon form-factors from generalized parton distributions. Phys. Rev. D 72, 054013 (2005)

    Article  ADS  Google Scholar 

  17. Goloskokov, S.V., Kroll, P.: Vector meson electroproduction at small Bjorken-x and generalized parton distributions. Eur. Phys. J. C 42, 281–301 (2005)

    Article  ADS  Google Scholar 

  18. Polyakov, M.V., Semenov-Tian-Shansky, K.M.: Dual parametrization of GPDs versus double distribution Ansatz. Eur. Phys. J. A 40, 181–198 (2009)

    Article  ADS  Google Scholar 

  19. Kumerički, K., Mueller, D.: Deeply virtual Compton scattering at small \(x_B\) and the access to the GPD H. Nucl. Phys. B 841, 1–58 (2010)

    Article  ADS  Google Scholar 

  20. Goldstein, G.R., Osvaldo Gonzalez Hernandez, J., Liuti, S.: Flexible parametrization of generalized parton distributions from deeply virtual Compton scattering observables. Phys. Rev. D 84, 034007 (2011)

    Article  ADS  Google Scholar 

  21. Polyakov, M.V., Weiss, C.: Skewed and double distributions in pion and nucleon. Phys. Rev. D 60, 114017 (1999)

    Article  ADS  Google Scholar 

  22. Anikin, I.V., Dorokhov, A.E., Maximov, A.E., Tomio, L., Vento, V.: Off diagonal quark distribution functions of the pion within an effective single instanton approximation (1999). arXiv:hep-ph/9905332

  23. Broniowski, W., Ruiz Arriola, E.: Impact parameter dependence of the generalized parton distribution of the pion in chiral quark models. Phys. Lett. B 574, 57–64 (2003)

    Article  ADS  Google Scholar 

  24. Broniowski, W., Ruiz Arriola, E., Golec-Biernat, K.: Generalized parton distributions of the pion in chiral quark models and their QCD evolution. Phys. Rev. D 77, 034023 (2008)

    Article  ADS  Google Scholar 

  25. Dorokhov, A.E., Broniowski, W., Arriola, E.R.: Generalized quark transversity distribution of the pion in chiral quark models. Phys. Rev. D 84, 074015 (2011)

    Article  ADS  Google Scholar 

  26. Dyson, F.J.: The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736–1755 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Schwinger, J.S.: On the Green’s functions of quantized fields. 1. Proc. Natl. Acad. Sci. 37, 452–455 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Schwinger, J.S.: On the Green’s functions of quantized fields. 2. Proc. Natl. Acad. Sci. 37, 455–459 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Salpeter, E.E., Bethe, H.A.: A relativistic equation for bound state problems. Phys. Rev. 84, 1232–1242 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gell-Mann, M., Low, F.: Bound states in quantum field theory. Phys. Rev. 84, 350–354 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Schwinger, J.S.: The theory of quantized fields. 2. Phys. Rev. 91, 713–728 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Chang, L., Roberts, C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Chang, L., Roberts, C.D.: Tracing masses of ground-state light-quark mesons. Phys. Rev. C 85, 052201 (2012)

    Article  ADS  Google Scholar 

  34. Roberts, H.L.L., Bashir, A., Gutierrez-Guerrero, L.X., Roberts, C.D., Wilson, D.J.: pi- and rho-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)

    Article  ADS  Google Scholar 

  35. Tiburzi, B.C., Miller, G.A.: Generalized parton distributions and double distributions for q anti-q pions. Phys. Rev. D 67, 113004 (2003)

    Article  ADS  Google Scholar 

  36. Theussl, L., Noguera, S., Vento, V.: Generalized parton distributions of the pion in a Bethe–Salpeter approach. Eur. Phys. J. A 20, 483–498 (2004)

    Article  ADS  Google Scholar 

  37. Bissey, F., Cudell, J.R., Cugnon, J., Lansberg, J.P., Stassart, P.: A model for the off forward structure functions of the pion. Phys. Lett. B 587, 189–200 (2004)

    Article  ADS  Google Scholar 

  38. Van Dyck, A., Van Cauteren, T., Ryckebusch, J.: Support of generalized parton distributions in Bethe–Salpeter models of hadrons. Phys. Lett. B 662, 413–416 (2008)

    Article  ADS  Google Scholar 

  39. Frederico, T., Pace, E., Pasquini, B., Salme, G.: Pion generalized parton distributions with covariant and light-front constituent quark models. Phys. Rev. D 80, 054021 (2009)

    Article  ADS  Google Scholar 

  40. Lei Chang, I.C., Cloet, J.J., Cobos-Martinez, C.D., Roberts, S.M.S., et al.: Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)

    Article  ADS  Google Scholar 

  41. Chang, L., Mezrag, C., Moutarde, H., Roberts, C.D., Rodriguez-Quintero, J., et al.: Basic features of the pion valence-quark distribution function. Phys. Lett. B 737, 23–29 (2014)

    Article  ADS  MATH  Google Scholar 

  42. Mezrag, C., Moutarde, H., Rodríguez-Quintero, J., Sabatié, F.: Towards a pion generalized parton distribution model from Dyson–Schwinger equations (2014). arXiv:hep-ph/1406.7425

  43. Mezrag, C., Chang, L., Moutarde, H., Roberts, C.D., Rodríguez-Quintero, J., et al.: Sketching the pion’s valence-quark generalised parton distribution. Phys. Lett. B 741, 190–196 (2014)

    Article  Google Scholar 

  44. Maris, P., Roberts, C.D.: Dyson–Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E 12, 297–365 (2003)

    Article  ADS  Google Scholar 

  45. Cloet, I.C., Roberts, C.D.: Explanation and prediction of observables using continuum strong QCD. Prog. Part. Nucl. Phys. 77, 1–69 (2014)

    Article  ADS  Google Scholar 

  46. Diehl, M.: Generalized parton distributions with helicity flip. Eur. Phys. J. C 19, 485–492 (2001)

    Article  ADS  Google Scholar 

  47. Diehl, M., Gousset, T.: Time ordering in off diagonal parton distributions. Phys. Lett. B 428, 359–370 (1998)

    Article  ADS  Google Scholar 

  48. Polyakov, M.V.: Hard exclusive electroproduction of two pions and their resonances. Nucl. Phys. B 555, 231 (1999)

    Article  ADS  Google Scholar 

  49. Diehl, M., Feldmann, T., Jakob, R., Kroll, P.: The overlap representation of skewed quark and gluon distributions. Nucl. Phys. B 596, 33–65 (2001)

    Article  ADS  MATH  Google Scholar 

  50. Pire, B., Soffer, J., Teryaev, O.: Positivity constraints for off-forward parton distributions. Eur. Phys. J. C8, 103–106 (1999)

    Article  ADS  Google Scholar 

  51. Pobylitsa, P.V.: Inequalities for generalized parton distributions H and E. Phys. Rev. D 65, 077504 (2002)

    Article  ADS  Google Scholar 

  52. Pobylitsa, P.V.: Disentangling positivity constraints for generalized parton distributions. Phys. Rev. D 65, 114015 (2002)

    Article  ADS  Google Scholar 

  53. Diehl, M.: Generalized parton distributions in impact parameter space. Eur. Phys. J. C 25, 223–232 (2002)

    Article  ADS  Google Scholar 

  54. Wilson, K.G.: Nonlagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  55. Anikin, S.A., Zavyalov, O.I.: Short distance and light cone expansions for products of currents. Ann. Phys. 116, 135–166 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  56. Collins, J.C., Frankfurt, L., Strikman, M.: Factorization for hard exclusive electroproduction of mesons in QCD. Phys. Rev. D 56, 2982–3006 (1997)

    Article  ADS  Google Scholar 

  57. Ji, X.-D., Osborne, J.: One loop corrections and all order factorization in deeply virtual Compton scattering. Phys. Rev. D 58, 094018 (1998)

    Article  ADS  Google Scholar 

  58. Collins, J.C., Freund, A.: Proof of factorization for deeply virtual Compton scattering in QCD. Phys. Rev. D 59, 074009 (1999)

    Article  ADS  Google Scholar 

  59. Radyushkin, A.V.: Scaling limit of deeply virtual Compton scattering. Phys. Lett. B 380, 417–425 (1996)

    Article  ADS  Google Scholar 

  60. Girod, F.X., et al.: Measurement of deeply virtual Compton scattering beam-spin asymmetries. Phys. Rev. Lett. 100, 162002 (2008)

    Article  ADS  Google Scholar 

  61. Murray, M.J.: Physics updates from HERMES. AIP Conf. Proc. 1523, 46–50 (2012)

    ADS  Google Scholar 

  62. Chekanov, S., et al.: Measurement of deeply virtual Compton scattering at HERA. Phys. Lett. B 573, 46–62 (2003)

    Article  ADS  Google Scholar 

  63. Aktas, A., et al.: Measurement of deeply virtual Compton scattering at HERA. Eur. Phys. J. C 44, 1–11 (2005)

    Google Scholar 

  64. Guidal, M.: A fitter code for deep virtual Compton scattering and generalized parton distributions. Eur. Phys. J. A 37, 319–332 (2008)

    Article  ADS  Google Scholar 

  65. Moutarde, H.: Extraction of the Compton form factor H from DVCS measurements at Jefferson Lab. Phys. Rev. D 79, 094021 (2009)

    Article  ADS  Google Scholar 

  66. Kumerički, K., Müller, D., Murray, M.: Revealing CFFs and GPDs from experimental measurements. Nuovo Cim. C036(05), 159–165 (2013)

    Google Scholar 

  67. Kumericki, K., Mueller, D., Schafer, A.: Neural network generated parametrizations of deeply virtual Compton form factors. JHEP 1107, 073 (2011)

    Article  ADS  MATH  Google Scholar 

  68. Ji, X.-D., Osborne, J.: One loop QCD corrections to deeply virtual Compton scattering: the parton helicity independent case. Phys. Rev. D 57, 1337–1340 (1998)

    Article  ADS  Google Scholar 

  69. Mankiewicz, L., Piller, G., Stein, E., Vanttinen, M., Weigl, T.: NLO corrections to deeply virtual Compton scattering. Phys. Lett. B 425, 186–192 (1998)

    Article  ADS  Google Scholar 

  70. Belitsky, A.V., Mueller, D., Niedermeier, L., Schafer, A.: Deeply virtual Compton scattering in next-to-leading order. Phys. Lett. B474, 163–169 (2000)

    Article  ADS  Google Scholar 

  71. Freund, A., McDermott, M.: A detailed next-to-leading order QCD analysis of deeply virtual Compton scattering observables. Eur. Phys. J. C 23, 651–674 (2002)

    Article  ADS  Google Scholar 

  72. Freund, A., McDermott, M.F.: A next-to-leading order analysis of deeply virtual Compton scattering. Phys. Rev. D 65, 091901 (2002)

    Article  ADS  Google Scholar 

  73. Freund, A., McDermott, M.F.: A next-to-leading order QCD analysis of deeply virtual Compton scattering amplitudes. Phys. Rev. D 65, 074008 (2002)

    Article  ADS  Google Scholar 

  74. Pire, B., Szymanowski, L., Wagner, J.: NLO corrections to timelike, spacelike and double deeply virtual Compton scattering. Phys. Rev. D 83, 034009 (2011)

    Article  ADS  Google Scholar 

  75. Moutarde, H., Pire, B., Sabatie, F., Szymanowski, L., Wagner, J.: On timelike and spacelike deeply virtual Compton scattering at next to leading order. Phys. Rev. D 87, 054029 (2013)

    Article  ADS  Google Scholar 

  76. Geyer, B., Robaschik, D., Bordag, M., Horejsi, J.: Nonlocal light cone expansions and evolution equations. Z. Phys. C26, 591–600 (1985)

    ADS  MathSciNet  Google Scholar 

  77. Braunschweig, T., Geyer, B., Horejsi, J., Robaschik, D.: Hadron operators on the light cone. Z. Phys. C33, 275 (1986)

    ADS  Google Scholar 

  78. Dittes, F.M., Mueller, D., Robaschik, D., Geyer, B., Horejsi, J.: The Altarelli–Parisi kernel as asymptotic limit of an extended Brodsky–Lepage kernel. Phys. Lett. B209, 325–329 (1988)

    Article  ADS  Google Scholar 

  79. Balitsky, I.I., Radyushkin, A.V.: Light ray evolution equations and leading twist parton helicity dependent nonforward distributions. Phys. Lett. B 413, 114–121 (1997)

    Article  ADS  Google Scholar 

  80. Radyushkin, A.V.: Double distributions and evolution equations. Phys. Rev. D 59, 014030 (1999)

    Article  ADS  Google Scholar 

  81. Blumlein, J., Geyer, B., Robaschik, D.: On the evolution kernels of twist-2 light ray operators for unpolarized and polarized deep inelastic scattering. Phys. Lett. B 406, 161–170 (1997)

    Article  ADS  Google Scholar 

  82. Blumlein, J., Geyer, B., Robaschik, D.: The virtual Compton amplitude in the generalized Bjorken region: twist-2 contributions. Nucl. Phys. B 560, 283–344 (1999)

    Article  ADS  Google Scholar 

  83. Belitsky, A.V., Mueller, D.: Next-to-leading order evolution of twist-2 conformal operators: the Abelian case. Nucl. Phys. B 527, 207–234 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Belitsky, A.V., Mueller, D.: Broken conformal invariance and spectrum of anomalous dimensions in QCD. Nucl. Phys. B 537, 397–442 (1999)

    Article  ADS  Google Scholar 

  85. Belitsky, A.V., Mueller, D., Freund, A.: Reconstruction of nonforward evolution kernels. Phys. Lett. B 461, 270–279 (1999)

    Article  ADS  Google Scholar 

  86. Belitsky, A.V., Mueller, D.: Exclusive evolution kernels in two loop order: parity even sector. Phys. Lett. B 464, 249–256 (1999)

    Article  ADS  Google Scholar 

  87. Belitsky, A.V., Freund, A., Mueller, D.: Evolution kernels of skewed parton distributions. Nucl. Phys. B 574, 347–406 (2000)

    Article  ADS  Google Scholar 

  88. Efremov, A.V., Radyushkin, A.V.: Asymptotical behavior of pion electromagnetic form-factor in QCD. Theor. Math. Phys. 42, 97–110 (1980)

    Article  Google Scholar 

  89. Chernyak, V.L., Zhitnitsky, A.R., Serbo, V.G.: Asymptotic hadronic form-factors in quantum chromodynamics. JETP Lett. 26, 594–597 (1977)

    ADS  Google Scholar 

  90. Farrar, G.R., Jackson, D.R.: The pion form-factor. Phys. Rev. Lett. 43, 246 (1979)

    Article  ADS  Google Scholar 

  91. Peter Lepage, G., Brodsky, S.J.: Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons. Phys. Lett. B87, 359–365 (1979)

    Article  ADS  Google Scholar 

  92. Peter Lepage, G., Brodsky, S.J.: Exclusive processes in perturbative quantum chromodynamics. Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  93. Vinnikov, A.V.: Code for prompt numerical computation of the leading order GPD evolution (2006). arXiv:hep-ph/0604248

  94. Burkardt, M.: Impact parameter dependent parton distributions and off forward parton distributions for zeta —> 0. Phys. Rev., D62:071503 (2000). [Erratum: Phys. Rev.D66,119903(2002)]

  95. Radyushkin, A.V.: Asymmetric gluon distributions and hard diffractive electroproduction. Phys. Lett. B 385, 333–342 (1996)

    Article  ADS  Google Scholar 

  96. Teryaev, O.V.: Crossing and radon tomography for generalized parton distributions. Phys. Lett. B 510, 125–132 (2001)

    Article  ADS  MATH  Google Scholar 

  97. Tiburzi, B.C.: Double distributions: Loose ends. Phys. Rev. D 70, 057504 (2004)

    Article  ADS  Google Scholar 

  98. Belitsky, A.V., Mueller, D., Kirchner, A., Schafer, A.: Twist three analysis of photon electroproduction off pion. Phys. Rev. D 64, 116002 (2001)

    Article  ADS  Google Scholar 

  99. Goloskokov, S.V., Kroll, P.: The Role of the quark and gluon GPDs in hard vector-meson electroproduction. Eur. Phys. J. C 53, 367–384 (2008)

    Article  ADS  Google Scholar 

  100. Goloskokov, S.V., Kroll, P.: An Attempt to understand exclusive pi+ electroproduction. Eur. Phys. J. C 65, 137–151 (2010)

    Article  ADS  Google Scholar 

  101. Mezrag, C., Moutarde, H., Sabatié, F.: Test of two new parameterizations of the generalized parton distribution \(H\). Phys. Rev. D 88, 014001 (2013)

    Article  ADS  Google Scholar 

  102. Vanderhaeghen, M., Guichon, P.A.M., Guidal, M.: Hard electroproduction of photons and mesons on the nucleon. Phys. Rev. Lett. 80, 5064–5067 (1998)

    Article  ADS  Google Scholar 

  103. Guichon, P.A.M., Vanderhaeghen, M.: Virtual Compton scattering off the nucleon. Prog. Part. Nucl. Phys. 41, 125–190 (1998)

    Article  ADS  Google Scholar 

  104. Vanderhaeghen, M., Guichon, P.A.M., Guidal, M.: Deeply virtual electroproduction of photons and mesons on the nucleon: leading order amplitudes and power corrections. Phys. Rev. D 60, 094017 (1999)

    Article  ADS  Google Scholar 

  105. Kroll, P., Moutarde, H., Sabatie, F.: From hard exclusive meson electroproduction to deeply virtual Compton scattering. Eur. Phys. J. C 73, 2278 (2013)

    Article  ADS  Google Scholar 

  106. Polyakov, M.V., Shuvaev, A.G.: On’dual’ parametrizations of generalized parton distributions (2002)

  107. Müller, D., Polyakov, M.V., Semenov-Tian-Shansky, K.M.: Dual parametrization of generalized parton distributions in two equivalent representations. JHEP 1503, 052 (2015)

    Article  Google Scholar 

  108. Mueller, D., Schafer, A.: Complex conformal spin partial wave expansion of generalized parton distributions and distribution amplitudes. Nucl. Phys. B739, 1–59 (2006)

    Article  ADS  MATH  Google Scholar 

  109. Ruiz Arriola, E.: Pion structure at high-energies and low-energies in chiral quark models. Acta Phys. Polon. B33, 4443–4479 (2002)

    ADS  Google Scholar 

  110. Christov, C.V., Blotz, A., Kim, H.-C., Pobylitsa, P., Watabe, T., et al.: Baryons as nontopological chiral solitons. Prog. Part. Nucl. Phys. 37, 91–191 (1996)

    Article  ADS  Google Scholar 

  111. Choi, H.-M., Ji, C.-R., Kisslinger, L.S.: Skewed quark distribution of the pion in the light front quark model. Phys. Rev. D 64, 093006 (2001)

    Article  ADS  Google Scholar 

  112. Choi, H.-M., Ji, C.-R., Kisslinger, L.S.: Continuity of skewed parton distributions for the pion virtual Compton scattering. Phys. Rev. D 66, 053011 (2002)

    Article  ADS  Google Scholar 

  113. Mukherjee, A., Musatov, I.V., Pauli, H.C., Radyushkin, A.V.: Power law wave functions and generalized parton distributions for pion. Phys. Rev. D 67, 073014 (2003)

    Article  ADS  Google Scholar 

  114. Bakulev, A.P., Ruskov, R., Goeke, K., Stefanis, N.G.: Parton skewed distributions in the pion and quark-hadron duality. Phys. Rev. D 62, 054018 (2000)

    Article  ADS  Google Scholar 

  115. Vogt, C.: The Skewed quark distribution of the pion at large momentum transfer. Phys. Rev. D 64, 057501 (2001)

    Article  ADS  Google Scholar 

  116. Hoodbhoy, P., Ji, X., Yuan, F.: Probing quark distribution amplitudes through generalized parton distributions at large momentum transfer. Phys. Rev. Lett. 92, 012003 (2004)

    Article  ADS  Google Scholar 

  117. Amrath, D., Diehl, M., Lansberg, J.-P.: Deeply virtual Compton scattering on a virtual pion target. Eur. Phys. J. C 58, 179–192 (2008)

    Article  ADS  Google Scholar 

  118. Musatov, I.V., Radyushkin, A.V.: Evolution and models for skewed parton distributions. Phys. Rev. D 61, 074027 (2000)

    Article  ADS  Google Scholar 

  119. Diehl, M., Manashov, A., Schafer, A.: Generalized parton distributions for the pion in chiral perturbation theory. Phys. Lett. B 622, 69–82 (2005)

    Article  ADS  Google Scholar 

  120. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Benjamin Inc., New York (1980)

    MATH  Google Scholar 

  121. Seiler, E.: Gauge Theories as a problem of Constructive Quantum Field Theory and Statistical Mechanics. Springer, Berlin (1982)

    Google Scholar 

  122. Glimm, J., Jaffe, A.M.: Quantum Physics. A Functional Integral Point of View. Springer, Berlin (1987)

    MATH  Google Scholar 

  123. Bashir, A., Chang, L., Cloet, I.C., El-Bennich, B., Liu, Y.-X., et al.: Collective perspective on advances in Dyson–Schwinger equation QCD. Commun. Theor. Phys. 58, 79–134 (2012)

    Article  ADS  MATH  Google Scholar 

  124. Eichmann, G.: From quarks and gluons to Baryon form factors. Prog. Part. Nucl. Phys. 67, 234–238 (2012)

    Article  ADS  Google Scholar 

  125. Munczek, H.J.: Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger–Dyson and Bethe–Salpeter equations. Phys. Rev. D 52, 4736–4740 (1995)

    Article  ADS  Google Scholar 

  126. Bender, A., Roberts, C.D., Von Smekal, L.: Goldstone theorem and diquark confinement beyond rainbow ladder approximation. Phys. Lett. B380, 7–12 (1996)

    Article  ADS  Google Scholar 

  127. Qin, S., Chang, L., Liu, Y., Roberts, C.D., Wilson, D.J.: Interaction model for the gap equation. Phys. Rev. C 84, 042202 (2011)

    Article  ADS  Google Scholar 

  128. Qin, S., Chang, L., Liu, Y., Roberts, C.D., Wilson, D.J.: Investigation of rainbow-ladder truncation for excited and exotic mesons. Phys. Rev. C 85, 035202 (2012)

    Article  ADS  Google Scholar 

  129. Holl, A., Krassnigg, A., Maris, P., Roberts, C.D., Wright, S.V.: Electromagnetic properties of ground and excited state pseudoscalar mesons. Phys. Rev. C 71, 065204 (2005)

    Article  ADS  Google Scholar 

  130. Bhagwat, M.S., Pichowsky, M.A., Roberts, C.D., Tandy, P.C.: Analysis of a quenched lattice QCD dressed quark propagator. Phys. Rev. C 68, 015203 (2003)

    Article  ADS  Google Scholar 

  131. Bhagwat, M.S., Tandy, P.C.: Analysis of full-QCD and quenched-QCD lattice propagators. AIP Conf. Proc. 842, 225–227 (2006)

    Article  ADS  Google Scholar 

  132. Bowman, P.O., Heller, U.M., Leinweber, D.B., Parappilly, M.B., Williams, A.G., et al.: Unquenched quark propagator in Landau gauge. Phys. Rev. D 71, 054507 (2005)

    Article  ADS  Google Scholar 

  133. Llewellyn-Smith, C.H.: A relativistic formulation for the quark model for mesons. Ann. Phys. 53, 521–558 (1969)

    Article  ADS  Google Scholar 

  134. Lurié, D., Macfarlane, A.J., Takahashi, Y.: Normalization of Bethe–Salpeter wave functions. Phys. Rev. 140, B1091–B1099 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  135. Maris, P., Tandy, P.C.: Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)

    Article  ADS  Google Scholar 

  136. Maris, P., Roberts, C.D., Tandy, P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267–273 (1998)

    Article  ADS  Google Scholar 

  137. Bender, A., Detmold, W., Roberts, C.D., Thomas, A.W.: Bethe–Salpeter equation and a nonperturbative quark gluon vertex. Phys. Rev. C 65, 065203 (2002)

    Article  ADS  Google Scholar 

  138. Chang, L., Roberts, C.D., Schmidt, S.M.: Dressed-quarks and the nucleon’s axial charge. Phys. Rev. C 87, 015203 (2013)

    Article  ADS  Google Scholar 

  139. Maris, P., Roberts, C.D.: Pseudovector components of the pion, pi0 –> gamma gamma, and F(pi) (q**2). Phys. Rev. C 58, 3659–3665 (1998)

    Article  ADS  Google Scholar 

  140. Ball, J.S., Chiu, T.-W.: Analytic properties of the vertex function in gauge theories. 1. Phys. Rev. D 22, 2542 (1980)

    Article  ADS  Google Scholar 

  141. Chen, C., Chang, L., Roberts, C.D., Wan, S., Wilson, D.J.: Spectrum of hadrons with strangeness. Few Body Syst. 53, 293–326 (2012)

    Article  ADS  Google Scholar 

  142. Binosi, D., Chang, L., Papavassiliou, J., Roberts, C.D.: Bridging a gap between continuum-QCD and ab initio predictions of hadron observables. Phys. Lett. B 742, 183–188 (2015)

    Article  ADS  Google Scholar 

  143. Bashir, A., Raya, A., Cloet, I.C., Roberts, C.D.: Regarding confinement and dynamical chiral symmetry breaking in QED3. Phys. Rev. C 78, 055201 (2008)

    Article  ADS  Google Scholar 

  144. Raya, K., Bashir, A., Hernández-Ortiz, S., Raya, A., Roberts, C.D.: Multiple solutions for the fermion mass function in QED3. Phys. Rev. D 88(9), 096003 (2013)

    Article  ADS  Google Scholar 

  145. Nakanishi, N.: Partial-wave Bethe–Salpeter equation. Phys. Rev. 130, 1230–1235 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  146. Karmanov, V.A., Carbonell, J.: Solving Bethe–Salpeter equation in Minkowski space. Eur. Phys. J. A 27, 1–9 (2006)

    Article  ADS  MATH  Google Scholar 

  147. Shi, C., Chen, C., Chang, L., Roberts, C.D., Schmidt, S.M., Zong, H.-S.: Kaon and pion parton distribution amplitudes to twist-three. Phys. Rev. D 92, 014035 (2015)

    Article  ADS  Google Scholar 

  148. Kopeliovich, B.Z., Schmidt, I., Siddikov, M.: Nonperturbative features of the axial current. Nucl. Phys. A918, 41–60 (2013)

    Article  ADS  Google Scholar 

  149. Mandelstam, S.: Dynamical variables in the Bethe–Salpeter formalism. Proc. R. Soc. Lond. A233, 248 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  150. Nishijima, K., Singh, A.H.: Normalization of Bethe–Salpeter amplitudes. Phys. Rev. 162, 1740–1746 (1967)

    Article  ADS  Google Scholar 

  151. Aicher, M., Schafer, A., Vogelsang, W.: Soft-gluon resummation and the valence parton distribution function of the pion. Phys. Rev. Lett. 105, 252003 (2010)

    Article  ADS  Google Scholar 

  152. Mezrag, C.: Generalised parton distributions : from phenomenological approaches to Dyson–Schwinger equations. PhD thesis, IRFU, SPhN, Saclay (2015)

  153. Amendolia, S.R., et al.: A measurement of the space—like pion electromagnetic form-factor. Nucl. Phys. B 277, 168 (1986)

    Article  ADS  Google Scholar 

  154. Huber, G.M., et al.: Charged pion form-factor between Q**2 = 0.60-GeV**2 and 2.45-GeV**2. II. Determination of, and results for, the pion form-factor. Phys. Rev. C 78, 045203 (2008)

    Article  ADS  Google Scholar 

  155. Goldberger, M.L., Treiman, S.B.: Form-factors in Beta decay and muon capture. Phys. Rev. 111, 354–361 (1958)

    Article  ADS  MATH  Google Scholar 

  156. Chang, L., Mezrag, C., Moutarde, H., Roberts, C.D., Rodríguez-Quintero, J., et al.: DSE inspired model for the pion’s valence dressed-quark GPD. J. Phys. Conf. Ser. 631(1), 012062 (2015). doi:10.1088/1742-6596/631/1/012062

    Article  ADS  Google Scholar 

  157. Ezawa, Z.F.: Wide-angle scattering in softened field theory. Nuovo Cim. A 23, 271–290 (1974)

    Article  ADS  Google Scholar 

  158. Farrar, G.R., Jackson, D.R.: Pion and nucleon structure functions near x = 1. Phys. Rev. Lett. 35, 1416 (1975)

    Article  ADS  Google Scholar 

  159. Brodsky, S.J., Burkardt, M., Schmidt, I.: Perturbative QCD constraints on the shape of polarized quark and gluon distributions. Nucl. Phys. B 441, 197–214 (1995)

    Article  ADS  Google Scholar 

  160. Ji, X., Ma, J.-P., Yuan, F.: Factorization of large-x quark distributions in a hadron. Phys. Lett. B 610, 247–252 (2005)

    Article  ADS  Google Scholar 

  161. Bloch, J.C.R., Roberts, C.D., Schmidt, S.M.: Selected nucleon form-factors and a composite scalar diquark. Phys. Rev. C 61, 065207 (2000)

    Article  ADS  Google Scholar 

  162. Hecht, M.B., Roberts, C.D., Schmidt, S.M.: Valence quark distributions in the pion. Phys. Rev. C 63, 025213 (2001)

    Article  ADS  Google Scholar 

  163. Burkardt, M.: Impact parameter space interpretation for generalized parton distributions. Int. J. Mod. Phys. A 18, 173–208 (2003)

    Article  ADS  MATH  Google Scholar 

  164. Nambu, Y., Jona-Lasinio, G.: Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345–358 (1961)

    Article  ADS  Google Scholar 

  165. Burkardt, M., Ji, X., Yuan, F.: Scale dependence of hadronic wave functions and parton densities. Phys. Lett. B 545, 345–351 (2002)

    Article  ADS  MATH  Google Scholar 

  166. Ji, C.-R., Mishchenko, Y., Radyushkin, A.: Higher Fock state contributions to the generalized parton distribution of pion. Phys. Rev. D 73, 114013 (2006)

    Article  ADS  Google Scholar 

  167. Hwang, D.S., Mueller, D.: Implication of the overlap representation for modelling generalized parton distributions. Phys. Lett. B 660, 350–359 (2008)

    Article  ADS  Google Scholar 

  168. Müller, D., Hwang, D.S.: The concept of phenomenological light-front wave functions—Regge improved diquark model predictions (2014). arXiv:hep-ph/1407.1655

  169. Pobylitsa, P.V.: Solution of polynomiality and positivity constraints on generalized parton distributions. Phys. Rev. D 67, 034009 (2003)

    Article  ADS  Google Scholar 

  170. Diehl, M., Gousset, T., Pire, B., Teryaev, O.: Probing partonic structure in gamma* gamma –> pi pi near threshold. Phys. Rev. Lett. 81, 1782–1785 (1998)

    Article  ADS  Google Scholar 

  171. Diehl, M., Gousset, T., Pire, B.: Exclusive production of pion pairs in gamma* gamma collisions at large Q**2. Phys. Rev. D 62, 073014 (2000)

    Article  ADS  Google Scholar 

  172. Mezrag, C., Moutarde, H., Rodríguez-Quintero, J.: Forthcoming paper on radon transform (2016)

  173. Müller, D., Semenov-Tian-Shansky, K.M.: \(J=0\) fixed pole and \(D\)-term form factor in deeply virtual Compton scattering. Phys. Rev. D 92(7), 074025 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mezrag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezrag, C., Moutarde, H. & Rodríguez-Quintero, J. From Bethe–Salpeter Wave functions to Generalised Parton Distributions. Few-Body Syst 57, 729–772 (2016). https://doi.org/10.1007/s00601-016-1119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1119-8

Navigation