Skip to main content
Log in

Stress dependent thermal pressurization of a fluid-saturated rock

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

Temperature increase in saturated porous materials under undrained conditions leads to thermal pressurization of the pore fluid due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the solid matrix. This increase in the pore fluid pressure induces a reduction of the effective mean stress and can lead to shear failure or hydraulic fracturing. The equations governing the phenomenon of thermal pressurization are presented and this phenomenon is studied experimentally for a saturated granular rock in an undrained heating test under constant isotropic stress. Careful analysis of the effect of mechanical and thermal deformations of the drainage and pressure measurement system is performed and a correction of the measured pore pressure is introduced. The test results are modelled using a non-linear thermo-poro-elastic constitutive model of the granular rock with emphasis on the stress-dependent character of the rock compressibility. The effects of stress and temperature on thermal pressurization observed in the test are correctly reproduced by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bass JD (1995) Elasticity of minerals, glasses, and melts. In: Thomas JA (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union Online Reference Shelf 2, pp 45–63

  • Berryman J (1995) Mixture theories for rock properties. In: Thomas JA (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union Online Reference Shelf 3, pp 205–228

  • JG Berryman (1992) ArticleTitleEffective stress for transport properties of inhomogeneous porous rock J Geophys Res 97 17409–17424 Occurrence Handle10.1029/92JB01593

    Article  Google Scholar 

  • AW Bishop (1973) ArticleTitleThe influence of an undrained change in stress on the pore pressure in porous media of low compressibility Géotechnique 23 IssueID3 435–442

    Google Scholar 

  • AW Bishop (1976) ArticleTitleThe influence of system compressibility on the observed pore pressure response to an undrained change in stress in saturated rock Géotechnique 26 IssueID2 371–375

    Google Scholar 

  • AW Bishop AKG Eldin (1950) ArticleTitleUndrained triaxial tests on saturated sands and their significance in the general theory of shear strength Géotechnique 2 IssueID1 13–32

    Google Scholar 

  • Boutéca MJ, Bary D, Piau JM, Kessler N, Boisson M, Fourmaintraux D (1994) Contribution of poroelasticity to reservoir engineering: lab experiments, application to core decompression and implication in HP-HT reservoirs depletion. Proceedings of the Eurock’94, Delft, Balkema, Rotterdam, Paper SPE/ISRM 28093

  • RG Campanella JK Mitchell (1968) ArticleTitleInfluence of temperature variations on soil behaviour Jnl Soil Mech Fdn Div Am Soc Civ Engrs 94 IssueIDSM3 709–734

    Google Scholar 

  • Coussy O (2004) Poromechanics. John Wiley & Sons

  • Detournay E, Cheng AH-D (1993) Fundamentals of Poroelasticity, Chap. 5. In: Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects, Vol. II. Analysis and design method, Pergamon, pp 113–171

  • L Dormieux A Molinari D Kondo (2002) ArticleTitleMicromechanical approach to the behavior of poroelastic materials J Mech Phys Solids 50 2203–2231 Occurrence Handle10.1016/S0022-5096(02)00008-X

    Article  Google Scholar 

  • RK Dropek JN Johnson JB Walsh (1978) ArticleTitleThe influence of pore pressure on the mechanical properties of Kayenta sandstone J Geophys Res 83 IssueIDB6 2817–2824 Occurrence Handle10.1029/JB083iB06p02817

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Thomas JA (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union Online Reference Shelf 2, pp 29–44

  • J Fortin A Schubnel Y Gueguen (2005) ArticleTitleElastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone Int J Rock Mech Min 42 873–889 Occurrence Handle10.1016/j.ijrmms.2005.05.002

    Article  Google Scholar 

  • B Gurevich (2004) ArticleTitleA simple derivation of the effective stress coefficient for seismic velocities in porous rocks Geophysics 69 IssueID2 393–397 Occurrence Handle10.1190/1.1707058

    Article  Google Scholar 

  • R Hill (1952) ArticleTitleThe elastic behavior of crystalline aggregate Proc Physical Soc London A65 349–354 Occurrence Handle10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  • AH Lachenbruch (1980) ArticleTitleFrictional heating, fluid pressure and the resistance to fault motion J Geophys Res 85 6097–6112 Occurrence Handle10.1029/JB085iB11p06097

    Article  Google Scholar 

  • DA Lockner SA Stanchits (2002) ArticleTitleUndrained poroelastic response of sandstones to deviatoric stress change J Geophys Res 107 IssueIDB12 2353 Occurrence Handle10.1029/2001JB001460

    Article  Google Scholar 

  • DF McTigue (1986) ArticleTitleThermoelastic response of fluid-saturated porous rock J Geophys Res 91 IssueIDB9 9533–9542 Occurrence Handle10.1029/JB091iB09p09533

    Article  Google Scholar 

  • G Mesri K Adachi CR Ulrich (1976) ArticleTitlePore-pressure response in rock to undrained change in all-around stress Géotechnique 26 IssueID2 317–330 Occurrence Handle10.1680/geot.1976.26.2.317

    Article  Google Scholar 

  • VV Palciauskas PA Domenico (1982) ArticleTitleCharacterization of drained and undrained response of thermally loaded repository rocks Water Resour Res 18 IssueID2 281–290 Occurrence Handle10.1029/WR018i002p00281

    Article  Google Scholar 

  • AW Rempel JR Rice (2006) ArticleTitleThermal pressurization and onset of melting in fault zones J Geophys Res 111 B09314 Occurrence Handle10.1029/2006JB004314

    Article  Google Scholar 

  • JR Rice (2006) ArticleTitleHeating and weakening of faults during earthquake slip J Geophys Res 111 B05311 Occurrence Handle10.1029/2005JB004006

    Article  Google Scholar 

  • JR Rice MP Cleary (1976) ArticleTitleSome basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents Rev Geophys Space Phys 14 IssueID2 227–240 Occurrence Handle10.1029/RG014i002p00227

    Article  Google Scholar 

  • AW Skempton (1954) ArticleTitleThe pore pressure coefficients A and B Géotechnique 4 143–147

    Google Scholar 

  • AW Skempton (1960) Effective stress in soils, concrete and rocks SeriesTitleConference on pore pressure and suction in soils Butterworths London 4–16

    Google Scholar 

  • Spang B (2002) Excel Add-In for Properties of Water and Steam in SI-Units, http://www.cheresources.com/staff.shtml

  • J Sulem I Vardoulakis E Papamichos A Oulahna J Tronvoll (1999) ArticleTitleElasto-plastic modelling of red wildmoor sandstone Mech Cohes Frict Mat 4 IssueID3 215–246

    Google Scholar 

  • J Sulem I Vardoulakis H Ouffroukh M Boulon J Hans (2004) ArticleTitleExperimental characterization of the thermo-poro-mechanical properties of the Aegion fault gouge Comptes Rendus Geosciences 336 IssueID4–5 455–466 Occurrence Handle10.1016/j.crte.2003.12.009

    Article  Google Scholar 

  • J Sulem H Ouffroukh (2006) ArticleTitleHydromechanical behaviour of fontainebleau sandstone Rock Mech Rock Eng 39 IssueID3 185–213 Occurrence Handle10.1007/s00603-005-0065-4

    Article  Google Scholar 

  • J Sulem P Lazar I Vardoulakis (2007) ArticleTitleThermo-poro-mechanical properties of clayey gouge and application to rapid fault shearing Int J Num Anal Meth Geomechanics 31 IssueID3 523–540 Occurrence Handle10.1002/nag.584

    Article  Google Scholar 

  • Sultan N (1997) Etude du comportement thermo-mécanique de l’argile de Boom: expériences et modélisation, PhD thesis, CERMES, Ecole Nationale des Ponts et Chaussées, France

  • I Vardoulakis (2002) ArticleTitleDynamic thermo-poro-mechanical analysis of catastrophic landslides Géotechnique 52 IssueID3 157–171 Occurrence Handle10.1680/geot.52.3.157.41012

    Article  Google Scholar 

  • JB Walsh (1973) ArticleTitleTheoretical bounds for thermal expansion, specific heat and strain energy due to internal stresses J Geophys Res 78 7636–7647

    Google Scholar 

  • AEZ Wissa (1969) ArticleTitlePore pressure measurement in saturated stiff soils Jnl Soil Mech Fdn Div Am Soc Civ Engrs 95 IssueIDSM4 1063–1073

    Google Scholar 

  • Zaoui A (2000) Matériaux hétérogènes et composites, Ecole Polytechnique

  • RW Zimmerman (1991) Compressibility of sandstones Elsevier Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghabezloo.

Additional information

Correspondence: Dr. S. Ghabezloo, CERMES, Ecole Nationale des Ponts et Chaussées, 6-8 avenue Blaise Pascal, Cité Descartes, 77455 Champs-sur-Marne, Marne la Vallée cedex 2, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghabezloo, S., Sulem, J. Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42, 1–24 (2009). https://doi.org/10.1007/s00603-008-0165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-008-0165-z

Navigation