Skip to main content
Log in

Application of Cracked Triangular Specimen Subjected to Three-Point Bending for Investigating Fracture Behavior of Rock Materials

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Numerical and experimental studies were performed on a new fracture test configuration called the edge cracked triangular (ECT) specimen. Using several finite-element analyses, the fracture parameters (i.e., K I, K II, and T-stress) were obtained for different combinations of modes I and II. The finite-element results show that the ECT specimen is able to provide pure mode I, pure mode II, and any mixed-mode loading conditions in between. Also, a series of mixed-mode fracture experiments were conducted on Neiriz marble rock using the proposed specimen. Furthermore, the generalized maximum tangential stress (GMTS) criterion was used to predict the experimental results. The GMTS criterion makes use of a three-parameter model (based on K I, K II, and T) for describing the crack tip stresses. Due to the significant positive T-stresses that exist in the ECT specimen, typical minimum fracture toughness values were expected to be obtained when the ECT specimen is used. The direction of fracture initiation and the path of fracture growth were also obtained theoretically using the GMTS criterion, and good agreement was observed between the experimental fracture path and theoretical simulations. The fracture study of this specimen reveals that the ECT specimen can be also used in mixed-mode fracture studies of rock materials in addition to the conventional circular or rectangular beam test samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

MTS:

Maximum tangential stress

ECT:

Edge cracked triangular

FE:

Finite element

GMTS:

Generalized maximum tangential stress

CZM:

Cohesive zone model

SED:

Strain energy density

a :

Crack length for ECT specimen

a/W :

Crack length ratio in the ECT specimen

r, θ :

Crack tip coordinates

t :

Specimen thickness

E :

Elastic modulus

T :

T-Stress

T * :

Normalized T-stress

2W :

Edge length of square plate

θ 0 :

Crack initiation direction

σ θθ :

Tangential stress component

ν :

Poisson’s ratio

K I :

Mode I stress intensity factor

K II :

Mode II stress intensity factor

K Ic :

Mode I fracture toughness

P :

Applied load

P cr :

Critical fracture load

r c :

Critical distance from the crack tip

Y I :

Mode I geometry factor

Y II :

Mode II geometry factor

α :

Crack inclination angle

σ θθc :

Critical tangential stress

σ t :

Tensile strength

References

  • Aliha MRM, Ayatollahi MR (2009) Brittle fracture evaluation of a fine grain cement mortar in combined tensile-shear deformation. Fatigue Fract Eng Mater Struct 32:987–994

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2010) Geometry effects on fracture behavior of polymethyl methaacrelate. Mater Sci Eng A 527(3):526–530

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Ashtari R (2006) Mode I and mode II fracture toughness testing for a coarse grain marble. Appl Mech Mater 5–6:181–188

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Pakzad R (2008) Brittle fracture analysis using a ring shape specimen containing two angled cracks. Int J Fract 153:63–68

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Kharrazi B (2009) Numerical and experimental investigation of mixed mode fracture in granite using four point bend specimen. Damage Fract Mech 46(1):275–283

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77:2200–2212

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Akbardoost J (2012) Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech Rock Eng 45:65–74

    Article  Google Scholar 

  • Arcan M, Hashin Z, Volosnin A (1978) A method to produce uniform plane-stress states with application to fibre-reinforced materials. Exp Mech 18:141–146

    Article  Google Scholar 

  • Atkinson C, Smelser RE, Sanchez J (1982) Combined mode fracture via the cracked Brazilian disc test. Int J Fract 18:279–291

    Google Scholar 

  • Awaji H, Sato S (1978) Combined mode fracture toughness measurement by the disc test. J Eng Mater Tech 100:175–182

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2007) Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comp Mater Sci 38:660–670

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2008a) On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials. Eng Fract Mech 75:4631–4641

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2008b) Mixed mode fracture analysis of polycrystalline graphite—a modified MTS criterion. Carbon 46:1302–1308

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2009) Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng Fract Mech 76:1563–1573

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2011) On the use of anti-symmetric four-point bend specimen for mode II fracture experiments. Fatigue Fract Eng Mater Struct 34:898–907

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM, Hassani MM (2006) Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Mater Sci Eng A 417(1–2):348–356

    Google Scholar 

  • Ayatollahi MR, Aliha MRM, Saghafi H (2011) An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Eng Fract Mech 78(1):110–123

    Article  Google Scholar 

  • Banks-Sills L, Bortman Y (1986) A mixed mode fracture specimen; analysis and testing. Int J Fract 30:181–201

    Article  Google Scholar 

  • Buchholz FG, Pirro PJM, Richard HA, Dreyer KH (1987) Numerical and experimental mixed-mode analysis of a compact tension-shear specimen. Proceedings of the fourth International Conference on Numerical methods in fracture mechanics, Pineridge Press, Swansea, p 641–56

  • Chang SH, Lee CI, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimen. Eng Geol 66:79–97

    Article  Google Scholar 

  • Choi SR, Zhu D, Miller RA (2005) Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures. Eng Fract Mech 72(13):2144–2158

    Article  Google Scholar 

  • Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26:R59–R62

    Article  Google Scholar 

  • Chong KP, Kuruppu MD, Kuszmual JS (1987) Fracture toughness determination of layered materials. Eng Fract Mech 28(1):43–54

    Article  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng Trans ASME 85:519–525

    Article  Google Scholar 

  • Fett T (2001) Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions. Eng Fract Mech 68:1119–1136

    Article  Google Scholar 

  • Fett T, Gerteisen G, Hahnenberger S, Martin G, Munz D (1995) Fracture tests for ceramics under mode-I, mode-II and mixed-mode loading. J Eur Ceram Soc 15:307–312

    Article  Google Scholar 

  • Gómez FJ, Elices M, Berto F, Lazzarin P (2009) Fracture of U-notched specimens under mixed mode: experimental results and numerical predictions. Eng Fract Mech 76(2):236–249

    Article  Google Scholar 

  • Hasanpour R, Choupani N (2009) Rock fracture characterization using the modified Arcan test specimen. Int J Rock Mech Min Sci 46(2):346–354

    Article  Google Scholar 

  • Hussain MA, Pu SL, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode II. Fracture analysis ASTM STP 560. American Society for Testing and Materials, Philadelphia, pp 22–28

    Google Scholar 

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Suggested methods prepared by the commission on testing methods. In: Ulusay R, Hudson JA (eds) International Society for rock mechanics commission on testing methods. Compilation arranged by the ISRM Turkish National Group, Ankara

    Google Scholar 

  • ISRM, Fowell RJ (1995) Suggested methods for determining mode I fracture toughness using cracked chevron notched Brazilian disk (CCNBD) specimens. Int J Rock Mech Min Sci Geomech Abstr 32:57–64

    Article  Google Scholar 

  • Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33:179–206

    Article  Google Scholar 

  • Krishnan GR, Xl Zhao, Zaman M, Roegiers JC (1998) Fracture toughness of a soft sandstone. Int J Rock Mech Min Sci 35(6):695–710

    Article  Google Scholar 

  • Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rate. Eng Fract Mech 21:405–421

    Article  Google Scholar 

  • Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending, part 2—mixed mode. Int J Rock Mech Min Sci Geomech Abstr 31(3):199–212

    Article  Google Scholar 

  • Maccagno TM, Knott JF (1989) The fracture behavior of PMMA in mixed modes I and II. Eng Fract Mech 34(1):65–86

    Article  Google Scholar 

  • Mahajan RV, Ravi-Chandar K (1989) An experimental investigation of mixed-mode fracture. Int J Fract 41:235–252

    Article  Google Scholar 

  • Maiti SKM, Prasad KSR (1980) A study on the theories of unstable crack extension for the prediction of crack trajectories. Int J Solids Struct 16:563–574

    Article  Google Scholar 

  • Richard HA, Benitz K (1983) A loading device for the creation of mixed mode in fracture mechanics. Int J Fract 22:R55–R58

    Article  Google Scholar 

  • Saghafi H, Ayatollahi MR, Sistaninia M (2010) A modified MTS criterion (MMTS) for mixed-mode fracture toughness assessment of brittle materials. Mater Sci Eng A 527(21–22):5624–5630

    Google Scholar 

  • Schmidt RA (1980) A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. Proceedings of 21st US symposium on rock mechanics, p 581–590

  • Seed GM, Nowell D (1994) Use of the distributed dislocations method to determine the T-stress. Fatigue Fract Eng Mater Struct 17(5):605–618

    Article  Google Scholar 

  • Shetty DK, Rosenfield AR, Duckworth WH (1987) Mixed-mode fracture in biaxial stress state: application of the diametral-compression (Brazilian disk) test. Eng Fract Mech 26(6):825–840

    Article  Google Scholar 

  • Shiryaev AM, Kotkis AM (1982) Methods for determining fracture toughness of brittle porous materials. Indus Lab 48(9):917–918

    Google Scholar 

  • Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10:305–321

    Article  Google Scholar 

  • Singh RN, Sun GX (1990) A numerical and experimental investigation for determining fracture toughness of Welsh limestone. Min Sci Tech 10:61–70

    Article  Google Scholar 

  • Sistaninia M (2009) Mode II fracture study of rock materials using cracked Brazilian disc specimen (MSc theses). Iran University of Science and Technology, Iran

    Google Scholar 

  • Smith DJ, Ayatollahi MR, Pavier MJ (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading. Fatigue Fract Eng Mater Struct 24:137–150

    Article  Google Scholar 

  • Sumi Y (1985) Computational crack path prediction. Theor Appl Fract Mech 4:149–156

    Article  Google Scholar 

  • Suresh S, Shih CF, Morrone A, O-Dowd NP (1990) Mixed-mode fracture toughness of ceramic materials. J Am Ceram Soc 73(5):1257–1267

    Article  Google Scholar 

  • Tikare V, Choi SR (1993) Combined mode I and mode II fracture of monolithic ceramics. J Am Ceram Soc 76(9):2265–2272

    Article  Google Scholar 

  • Whittaker BN, Singh RN, Sun GX (1992) Rock fracture mechanics-principles, design and applications. Elsevier, Amsterdam

    Google Scholar 

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    Google Scholar 

  • Williams JG, Ewing PD (1972) Fracture under complex stress—the angled crack problem. Int J Fract 8:441–446

    Google Scholar 

  • Xeidakis GS, Samaras IS, Zacharopoulos DA, Papakalitakis GE (1996) Crack growth in a mixed-mode loading on marble beams under three point bending. Int J Fract 79:197–208

    Article  Google Scholar 

  • Zipf RK, Bieniawski ZT (1986) Mixed mode testing for fracture testing of coal based on critical energy density. Proceedings of 27th US symposium on rock mechanics, p 16–23

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. M. Aliha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliha, M.R.M., Hosseinpour, G.R. & Ayatollahi, M.R. Application of Cracked Triangular Specimen Subjected to Three-Point Bending for Investigating Fracture Behavior of Rock Materials. Rock Mech Rock Eng 46, 1023–1034 (2013). https://doi.org/10.1007/s00603-012-0325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-012-0325-z

Keywords

Navigation