Skip to main content
Log in

A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials

  • Review Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The purpose of this review is to discuss the development and the state of the art in dynamic testing techniques and dynamic mechanical behaviour of rock materials. The review begins by briefly introducing the history of rock dynamics and explaining the significance of studying these issues. Loading techniques commonly used for both intermediate and high strain rate tests and measurement techniques for dynamic stress and deformation are critically assessed in Sects. 2 and 3. In Sect. 4, methods of dynamic testing and estimation to obtain stress–strain curves at high strain rate are summarized, followed by an in-depth description of various dynamic mechanical properties (e.g. uniaxial and triaxial compressive strength, tensile strength, shear strength and fracture toughness) and corresponding fracture behaviour. Some influencing rock structural features (i.e. microstructure, size and shape) and testing conditions (i.e. confining pressure, temperature and water saturation) are considered, ending with some popular semi-empirical rate-dependent equations for the enhancement of dynamic mechanical properties. Section 5 discusses physical mechanisms of strain rate effects. Section 6 describes phenomenological and mechanically based rate-dependent constitutive models established from the knowledge of the stress–strain behaviour and physical mechanisms. Section 7 presents dynamic fracture criteria for quasi-brittle materials. Finally, a brief summary and some aspects of prospective research are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49

Similar content being viewed by others

Abbreviations

a :

Crack length

A B, A s, A shear :

Cross-sectional area of the bar and the specimen, and shear area of the specimen

A(v):

Universal function

B s, B ws :

Thickness of the specimen and wall thickness of the tube specimen

C B, C s :

Longitudinal wave speeds of the bar and the specimen

C L, C S, C R :

Longitudinal wave speed, shear wave speed and Rayleigh wave speed

d :

Grain size of the specimen

D B, D s :

Diameter of the bar and the specimen

E B, E s :

Young’s modulus of the bar and the specimen

E, E d :

Quasi-static and dynamic Young’s modulus

E max, E min, E avg :

Maximum, minimum and average Young’s modulus of the specimen

f :

Frequency factor

f(a/R), f(a/W), f(S/2R):

Geometric correction function

F :

Return force

G dC :

Dynamic fracture energy

h :

Initial distance between two plates

\(\dot{h}\) :

Velocity of two plates in the Stefan effect equation

H:

Loading history

K :

Kinetic energy of the fragment

K IC, K IIC :

Mode I and II fracture toughness

K Id, K ID :

Dynamic crack initiation and propagation toughness

\(K_{\text{I}}^{\text{dyn}} (t)\) :

Dynamic stress intensity factor

\(\dot{K}_{\text{I}}^{\text{dyn}}\) :

Loading rate of fracture toughness

\(L_{\text{s}}\), \(L_{\text{str}}\) :

Length of the specimen and the striker bar

n :

Number of reflections

P(t):

Applied dynamic load

P 1, P 2 :

Forces at bar–specimen interfaces

P c :

Confining pressure

Q :

Activation energy

R:

Air constant in Arrhenius equation

R :

Radius of the specimen

R(t):

Ratio of stress difference

S :

Span of bending

t 0 :

Transit time to travel through the specimen once

t equil :

Time to reach stress equilibrium

t f :

Time to fracture

t In. :

Duration of the incident pulse

t rise :

Rise time of the stress history

T :

Temperature

T d :

Dynamic torque

\(\dot{u}_{1}\), \(\dot{u}_{2}\) :

Velocities at the incident bar–specimen and specimen–transmitted bar interfaces

v, v lim, v max :

Crack propagation velocity, limit of velocity and maximum velocity

v 1, v 2 :

Velocities of fragments

V :

Volume of liquid

V eject :

Ejection velocity of fragment

V p :

Particle velocity

\(\Updelta V_{\text{pb}}\) :

‘Pull-back’ velocity

V str :

Velocity of the striker

W :

Width of the specimen

W FD :

Fracture and damage energy

W In., W Re., W Tr. :

Strain energies of the incident, reflected and transmitted stress waves

W s :

Energy absorbed by the specimen

x f :

Distance from free end to fracture position

α :

Angle of the wedge

γ :

Shear strain

\(\dot{\gamma }(t)\) :

Shear strain rate

\(\varepsilon_{ 1}\) :

Axial strain

\(\varepsilon_{\text{f}}\) :

Strain to failure

\(\varepsilon_{{{\text{In.}}}}\), \(\varepsilon_{{{\text{Re.}}}}\), \(\varepsilon_{{{\text{Tr.}}}}\) :

Incident, reflected and transmitted strains measured by strain gauges on the bars

\(\dot{\varepsilon }\), \(\dot{\varepsilon }_{\lim }\), \(\dot{\varepsilon }_{\text{cri}}\), \(\dot{\varepsilon }_{\hbox{max} }\) :

Strain rate, limit of strain rate, critical strain rate and maximum strain rate

\(\eta\) :

Viscosity of liquid

\(\dot{\theta }_{ 1} (t)\), \(\dot{\theta }_{ 2} (t)\) :

Angular velocities of the specimen ends

\(\mu\) :

Friction coefficient between the wedge and the bar

\(\nu\) :

Poisson’s ratio

\(\rho_{\text{s}}\) :

Density of the specimen

\(\sigma_{\text{d}} (t)\) :

Dynamic stress history

\(\sigma_{\text{d}}\), \(\sigma_{\text{s}}\) :

Dynamic strength and quasi-static strength

\(\sigma_{\text{spall}}\) :

Spalling strength

\(\sigma_{\text{t}}\), \(\sigma_{\text{td}}\) :

Quasi-static and dynamic tensile strength

\(\sigma_{\text{tc}}\), \(\sigma_{\text{tcd}}\) :

Quasi-static and dynamic triaxial compressive strength

\(\sigma_{\text{uc}}\), \(\sigma_{\text{ucd}}\) :

Quasi-static and dynamic uniaxial compressive strength

\(\sigma_{\text{t,max}}^{{_{{{\text{Re.}}}} }}\) :

Maximum reflected tensile stress

\({{\sigma_{\text{ucd}} } \mathord{\left/ {\vphantom {{\sigma_{\text{ucd}} } {\sigma_{\text{uc}} }}} \right. \kern-0pt} {\sigma_{\text{uc}} }}\) :

Normalized dynamic uniaxial compressive strength

\(\sigma_{ 1} - \sigma_{ 3}\) :

Differential stress

\(\dot{\sigma }\) :

Stress rate

\(\tau (t)\) :

Shear stress

\(\tau\), \(\tau_{\text{d}}\) :

Quasi-static and dynamic shear strength

\(\omega\) :

Angular velocity of fragment

ASTM:

American Society for Testing and Materials

BD:

Brazilian disc

CB:

Chevron bend

CCNBD:

Cracked chevron notched BD

CCNSCB:

Cracked chevron NSCB

CDM:

Continuum damage mechanics

CEB:

Comité Euro-International du Béton

COD:

Crack opening displacement

CPG:

Crack propagation gauge

CRD:

Commission on Rock Dynamics

CSR:

Constant strain rate

CSTFBD:

Cracked straight through FBD

CT:

Compact tension

DCA:

Dominant crack algorithm

DIC:

Digital image correlation

DIF:

Dynamic increase factor

DT:

Direct tension

FBD:

Flattened BD

FEM:

Finite-element method

HCBD:

Holed cracked BD

HCFBD:

Holed cracked FBD

HS:

High speed

HSR:

High strain rate

In-DT:

Indirect tension

IRT:

Infrared thermography

ISR:

Intermediate strain rate

ISRM:

International Society for Rock Mechanics

ITFC:

Incubation-time fracture criterion

LECEI:

Loading edge cracks by edge impact

LGG:

Laser gap gauge

MDM:

Micromechanical damage mechanics

NSCB:

Notched SCB

RST:

Rocking spalling test

SCB:

Semi-circular bending

SCM:

Sliding crack model

SCRAM:

Statistical crack mechanical model

SE:

Stress equilibrium

SEM:

Scanning electron microscope

SENB:

Single edge notched bending

SG:

Strain gauge

SHB:

Split Hopkinson bar

SHPB:

Split Hopkinson pressure bar

SHPSB:

Split Hopkinson pressure shear bar

SHTB:

Split Hopkinson tension bar

SIF:

Stress intensity factor

SM:

Suggested method

SR:

Short rod

TC:

Triaxial compression

TPB:

Three-point bending

TriHB:

Triaxially compressed Hopkinson bar

TSHB:

Torsional split Hopkinson bar

UC:

Uniaxial compression

VHSR:

Very high strain rate

WLCT:

Wedge loaded compact tension

References

  • Agbabian MS (1985) Design of structures to resist nuclear weapons effects, vol 42. Revised edn. Manual 42 of the Committee on Dynamic Effects of the Structural Division of ASCE, New York

  • Ahrens TJ, Rubin AM (1993) Impact-induced tensional failure in rock. J Geophys Res 98(E1):1185–1203. doi:10.1029/92je02679

    Google Scholar 

  • Ai HA, Ahrens TJ (2006) Simulation of dynamic response of granite: a numerical approach of shock-induced damage beneath impact craters. Int J Impact Eng 33(1–12):1–10. doi:10.1016/j.ijimpeng.2006.09.046

    Google Scholar 

  • Albertini C, Cadoni E, Labibes K (1999) Study of the mechanical properties of plain concrete under dynamic loading. Exp Mech 39(2):137–141. doi:10.1007/bf02331117

    Google Scholar 

  • Alves M, Karagiozova D, Micheli GB, Calle MAG (2012) Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen. Int J Impact Eng 49:130–141. doi:10.1016/j.ijimpeng.2012.04.005

    Google Scholar 

  • Ashby MF, Hallam SD (1986) The failure of brittle solids containing small cracks under compressive stress states. Acta Metall 34(3):497–510. doi:10.1016/0001-6160(86)90086-6

    Google Scholar 

  • Ashby MF, Sammis CG (1990) The damage mechanics of brittle solids in compression. Pure Appl Geophys 133(3):489–521. doi:10.1007/bf00878002

    Google Scholar 

  • ASM (2000) High strain rate tension and compression tests. ASM Handbook, Mechanical Testing and Evaluation ASM Int, Materials Park OH 8:429–446

  • Asprone D, Cadoni E, Prota A, Manfredi G (2009) Dynamic behavior of a Mediterranean natural stone under tensile loading. Int J Rock Mech Min 46(3):514–520. doi:10.1016/j.ijrmms.2008.09.010

    Google Scholar 

  • ASTM (2008a) D2936-08 Standard test method for direct tensile strength of intact rock core specimens. Annual book of ASTM standards. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2008b) D3967-08 Standard test method for splitting tensile strength of intact rock core specimens. Annual book of ASTM standards. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2011) E1820-11 Standard test method for measurement of fracture toughness. Annual book of ASTM standards. ASTM International, West Conshohocken

    Google Scholar 

  • Atkinson BK (1982) Subcritical crack propagation in rocks: theory, experimental results and applications. J Struct Geol 4(1):41–56. doi:10.1016/0191-8141(82)90005-0

    Google Scholar 

  • Atkinson BK (1987) Introduction to fracture mechanics and its geophysical applications. In: Atkinson BK (ed) Fracture mechanics of rock. Academic, London, pp 1–26

    Google Scholar 

  • Atkinson C, Smelser RE, Sanchez J (1982) Combined mode fracture via the cracked Brazilian disk test. Int J Fract 18(4):279–291. doi:10.1007/bf00015688

    Google Scholar 

  • Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402. doi:10.1007/s11340-008-9148-y

    Google Scholar 

  • Backers T, Fardin N, Dresen G, Stephansson O (2003) Effect of loading rate on mode I fracture toughness, roughness and micromechanics of sandstone. Int J Rock Mech Min 40(3):425–433. doi:10.1016/s1365-1609(03)00015-7

    Google Scholar 

  • Banadaki MMD, Mohanty B (2012) Numerical simulation of stress-wave induced fractures in rock. Int J Impact Eng 40–41:16–25. doi:10.1016/j.ijimpeng.2011.08.010

    Google Scholar 

  • Barla G, Zhao J (2010) Special issue: rock dynamics and earthquake engineering. Rock Mech Rock Eng 43(6):655–960. doi:10.1007/s00603-010-0120-7

    Google Scholar 

  • Bazant ZP, Bai SP, Gettu R (1993) Fracture of rock: effect of loading rate. Eng Fract Mech 45(3):393–398. doi:10.1016/0013-7944(93)90024-m

    Google Scholar 

  • Bertram A, Kalthoff JF (2003) Crack propagation toughness of rock for the range of low to very high crack speeds. Key Eng Mater 251–252:423–430. doi:10.4028/www.scientific.net/KEM.251-252.423

    Google Scholar 

  • Bhat HS, Rosakis AJ, Sammis CG (2012) A micromechanics based constitutive model for brittle failure at high strain rates. J Appl Mech 79(3):031016. doi:10.1115/1.4005897

    Google Scholar 

  • Bieniawski ZT (1967a) Mechanism of brittle fracture of rock: part I theory of the fracture process. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–406. doi:10.1016/0148-9062(67)90030-7

    Google Scholar 

  • Bieniawski ZT (1967b) Stability concept of brittle fracture propagation in rock. Eng Geol 2(3):149–162. doi:10.1016/0013-7952(67)90014-2

    Google Scholar 

  • Bieniawski ZT (1968) Fracture dynamics of rock. Int J Fract Mech 4(4):415–430. doi:10.1007/bf00186807

    Google Scholar 

  • Bindiganavile V, Banthia N (2006) Size effects and the dynamic response of plain concrete. J Mater Civ Eng 18(4):485–491. doi:10.1061/(ASCE)0899-1561(2006)18:4(485)

    Google Scholar 

  • Bischoff P, Perry S (1991) Compressive behaviour of concrete at high strain rates. Mater Struct 24(6):425–450. doi:10.1007/bf02472016

    Google Scholar 

  • Blanton TL (1981) Effect of strain rates from 10−2 to 10 s−1 in triaxial compression tests on three rocks. Int J Rock Mech Min Sci Geomech Abstr 18(1):47–62. doi:10.1016/0148-9062(81)90265-5

    Google Scholar 

  • Bohloli B (1997) Effects of the geological parameters on rock blasting using the Hopkinson split bar. Int J Rock Mech Min 34(3–4):32.e31–32.e39. doi:10.1016/s1365-1609(97)00228-1

    Google Scholar 

  • Bonamy D, Bouchaud E (2011) Failure of heterogeneous materials: a dynamic phase transition? Phys Rep 498(1):1–44. doi:10.1016/j.physrep.2010.07.006

    Google Scholar 

  • Brace WF, Bombolakis EG (1963) A note on brittle crack growth in compression. J Geophys Res 68(12):3709–3713. doi:10.1029/JZ068i012p03709

    Google Scholar 

  • Brace WF, Jones AH (1971) Comparison of uniaxial deformation in shock and static loading of three rocks. J Geophys Res 76(20):4913–4921. doi:10.1029/JB076i020p04913

    Google Scholar 

  • Braithwaite C (2009) High strain rate properties of geological materials. PhD., University of Cambridge, Cambridge

    Google Scholar 

  • Bratov V, Morozov NF, Petrov Y (2009) Dynamic strength of continuum. St.-Petersburg University Press, St.-Petersburg

    Google Scholar 

  • Budiansky B, O’Connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12(2):81–97. doi:10.1016/0020-7683(76)90044-5

    Google Scholar 

  • Cadoni E (2010) Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech Rock Eng 43(6):667–676. doi:10.1007/s00603-010-0101-x

    Google Scholar 

  • Cadoni E, Albertini C (2011) Modified Hopkinson bar technologies applied to the high strain rate rock tests. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, USA, pp 79–104

    Google Scholar 

  • Cai M, Liu D (2009) Study of failure mechanisms of rock under compressive-shear loading using real-time laser holography. Int J Rock Mech Min 46(1):59–68. doi:10.1016/j.ijrmms.2008.03.010

    Google Scholar 

  • Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth 32(8–14):907–916. doi:10.1016/j.pce.2006.03.007

    Google Scholar 

  • Campbell J, Dowling AR (1970) The behaviour of materials subjected to dynamic incremental shear loading. J Mech Phys Solids 18(1):43–63. doi:10.1016/0022-5096(70)90013-x

    Google Scholar 

  • Carmona S, Aguado A (2012) New model for the indirect determination of the tensile stress–strain curve of concrete by means of the Brazilian test. Mater Struct 45(10):1473–1485. doi:10.1617/s11527-012-9851-0

    Google Scholar 

  • Carosena M, Giovanni MC (2004) Recent advances in the use of infrared thermography. Meas Sci Technol 15(9):R27. doi:10.1088/0957-0233/15/9/R01

    Google Scholar 

  • CEB (1988) Concrete structures under impact and impulsive loading. vol 187. Bulletin d’information, No187, CEB Comité Euro-International du Béton, Lausanne

  • Chang S-H, Lee C-I, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1–2):79–97. doi:10.1016/s0013-7952(02)00033-9

    Google Scholar 

  • Chen EP (1999) Non-local effects on dynamic damage accumulation in brittle solids. Int J Numer Anal Meth Geomech 23(1):1–21. doi:10.1002/(sici)1096-9853(199901)23:1<1:aid-nag892>3.0.co;2-r

    Google Scholar 

  • Chen W, Ravichandran G (1996) An experimental technique for imposing dynamic multiaxial-compression with mechanical confinement. Exp Mech 36(2):155–158. doi:10.1007/bf02328712

    Google Scholar 

  • Chen W, Ravichandran G (1997) Dynamic compressive failure of a glass ceramic under lateral confinement. J Mech Phys Solids 45(8):1303–1328. doi:10.1016/s0022-5096(97)00006-9

    Google Scholar 

  • Chen WW, Song B (2011) Split Hopkinson (Kolsky) bar: design, testing and applications. Springer, New York

    Google Scholar 

  • Chen WW, Rajendran AM, Song B, Nie X (2007) Dynamic fracture of ceramics in armor applications. J Am Ceram Soc 90(4):1005–1018. doi:10.1111/j.1551-2916.2007.01515.x

    Google Scholar 

  • Chen R, Xia K, Dai F, Lu F, Luo SN (2009) Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech 76(9):1268–1276. doi:10.1016/j.engfracmech.2009.02.001

    Google Scholar 

  • Chen G, Kuang YC, Huang XC, Xu AM (2011) Dynamic compressive behavior of granite under active confinement. Adv Mater Res 291–294:1227–1232. doi:10.4028/www.scientific.net/AMR.291-294.1227

    Google Scholar 

  • Cho SH, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min 40(5):763–777. doi:10.1016/s1365-1609(03)00072-8

    Google Scholar 

  • Cho SH, Kubota TS, Ogata Y, Yokota M, Kaneko K (2005) Microscopic visualization of a granitic rock subject to dynamic tensile loading by using a micro X-ray CT system. Sci Technol Energ Mater 66(4):334–339

    Google Scholar 

  • Chong KP, Boresi AP (1990) Strain rate dependent mechanical properties of New Albany reference shale. Int J Rock Mech Min Sci Geomech Abstr 27(3):199–205. doi:10.1016/0148-9062(90)94328-q

    Google Scholar 

  • Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26(2):R59–R62. doi:10.1007/bf01157555

    Google Scholar 

  • Chong KP, Hoyt PM, Smith JW, Paulsen BY (1980) Effects of strain rate on oil shale fracturing. Int J Rock Mech Min Sci Geomech Abstr 17(1):35–43. doi:10.1016/0148-9062(80)90004-2

    Google Scholar 

  • Christensen R, Swanson S, Brown W (1972) Split-Hopkinson-bar tests on rock under confining pressure. Exp Mech 12(11):508–513. doi:10.1007/bf02320747

    Google Scholar 

  • Costin LS (1981) Static and dynamic fracture behaviour of oil shale. In: Freiman SW, Fuller ER (eds) Fracture mechanics for ceramics, rock and concrete, ASTM STP 745, vol 745. American Society for Testing and Materials, USA, pp 169–184

    Google Scholar 

  • Cotsovos DM, Pavlovic MN (2008) Numerical investigation of concrete subjected to high rates of uniaxial tensile loading. Int J Impact Eng 35(5):319–335. doi:10.1016/j.ijimpeng.2007.03.006

    Google Scholar 

  • Coviello A, Lagioia R, Nova R (2005) On the measurement of the tensile strength of soft rocks. Rock Mech Rock Eng 38(4):251–273. doi:10.1007/s00603-005-0054-7

    Google Scholar 

  • Curbach M, Eibl J (1990) Crack velocity in concrete. Eng Fract Mech 35(1–3):321–326. doi:10.1016/0013-7944(90)90210-8

    Google Scholar 

  • Dai F, Xia K (2010) Loading rate dependence of tensile strength anisotropy of Barre granite. Pure Appl Geophys 167(11):1419–1432. doi:10.1007/s00024-010-0103-3

  • Dai F, Xia KW (2013) Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite. Int J Rock Mech Min 60:57–65. doi:10.1016/j.ijrmms.2012.12.035

    Google Scholar 

  • Dai F, Xia K, Luo SN (2008) Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids. Rev Sci Instrum 79(12):123903–123906. doi:10.1063/1.3043420

    Google Scholar 

  • Dai F, Chen R, Iqbal MJ, Xia K (2010a) Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int J Rock Mech Min 47(4):606–613. doi:10.1016/j.ijrmms.2010.04.002

    Google Scholar 

  • Dai F, Chen R, Xia K (2010b) A semi-circular bend technique for determining dynamic fracture toughness. Exp Mech 50(6):783–791. doi:10.1007/s11340-009-9273-2

    Google Scholar 

  • Dai F, Xia K, Tang L (2010c) Rate dependence of the flexural tensile strength of Laurentian granite. Int J Rock Mech Min 47(3):469–475. doi:10.1016/j.ijrmms.2009.05.001

    Google Scholar 

  • Dai F, Huang S, Xia K, Tan Z (2010c) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666. doi:10.1007/s00603-010-0091-8

  • Dai F, Xia K, Zheng H, Wang YX (2011) Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech 78(15):2633–2644. doi:10.1016/j.engfracmech.2011.06.022

    Google Scholar 

  • Dai F, Xia K, Zuo JP, Zhang R, Xu NW (2013) Static and dynamic flexural strength anisotropy of Barre granite. Rock Mech Rock Eng. doi:10.1007/s00603-013-0390-y

  • Daniel IM, Rowlands RE (1975) On wave and fracture propagation in rock media. Exp Mech 15(12):449–457. doi:10.1007/bf02318359

    Google Scholar 

  • Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11(3):155–179. doi:10.1016/0022-5096(63)90050-4

    Google Scholar 

  • Deganis LE, Zuo QH (2011) Crack-mechanics based brittle damage model including nonlinear equation of state and porosity growth. J Appl Phys 109(7):073504–073511. doi:10.1063/1.3562140

    Google Scholar 

  • Deng H, Nemat-Nasser S (1992) Dynamic damage evolution in brittle solids. Mech Mater 14(2):83–103. doi:10.1016/0167-6636(92)90008-2

    Google Scholar 

  • Deshpande VS, Evans AG (2008) Inelastic deformation and energy dissipation in ceramics: a mechanism-based constitutive model. J Mech Phys Solids 56(10):3077–3100. doi:10.1016/j.jmps.2008.05.002

    Google Scholar 

  • Deshpande VS, Gamble EAN, Compton BG, McMeeking RM, Evans AG, Zok FW (2011) A constitutive description of the inelastic response of ceramics. J Am Ceram Soc 94:S204–S214. doi:10.1111/j.1551-2916.2011.04516.x

    Google Scholar 

  • Desmorat R, Chambart M, Gatuingt F, Guilbaud D (2010) Delay-active damage versus non-local enhancement for anisotropic damage dynamics computations with alternated loading. Eng Fract Mech 77(12):2294–2315. doi:10.1016/j.engfracmech.2010.04.006

    Google Scholar 

  • Dienes JK (1985) A statistical theory of fragmentation processes. Mech Mater 4(3–4):325–335. doi:10.1016/0167-6636(85)90030-4

    Google Scholar 

  • Doan M-L, Billi A (2011) High strain rate damage of Carrara marble. Geophys Res Lett 38(19):L19302. doi:10.1029/2011gl049169

    Google Scholar 

  • Doan M-L, Gary G (2009) Rock pulverization at high strain rate near the San Andreas fault. Nat Geosci 2(10):709–712. doi:10.1038/ngeo640

    Google Scholar 

  • Dong S, Wang Y, Xia Y (2004) Stress intensity factors for central cracked circular disk subjected to compression. Eng Fract Mech 71(7–8):1135–1148. doi:10.1016/s0013-7944(03)00120-6

    Google Scholar 

  • Dong S, Wang Y, Xia Y (2006) A finite element analysis for using Brazilian disk in split Hopkinson pressure bar to investigate dynamic fracture behavior of brittle polymer materials. Polym Test 25(7):943–952. doi:10.1016/j.polymertesting.2006.06.003

    Google Scholar 

  • Dubé JF, Pijaudier-Cabot G, La Borderie C (1996) Rate dependent damage model for concrete in dynamics. J Eng Mater-T ASME 122(10):939–947. doi:10.1061/(ASCE)0733-9399(1996)122:10(939

    Google Scholar 

  • Dumont D, Deschamps A, Brechet Y (2004) A model for predicting fracture mode and toughness in 7000 series aluminium alloys. Acta Mater 52(9):2529–2540. doi:10.1016/j.actamat.2004.01.044

    Google Scholar 

  • Dutta PK, Kim K (1993) High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures. U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory

  • Ehrgott JQ, Sloan RC (1971) Development of a dynamic high-pressure triaxial test device. U.S. Army Engineer Waterways Experiment Station, Vicksburg

  • Ellwood S, Griffiths LJ, Parry DJ (1982) Materials testing at high constant strain rates. J Phys E Sci Instrum 15(3):280. doi:10.1088/0022-3735/15/3/009

    Google Scholar 

  • Erzar B, Forquin P (2010) An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech 50(7):941–955. doi:10.1007/s11340-009-9284-z

    Google Scholar 

  • Fahrenthold EP (1991) A continuum damage model for fracture of brittle solids under dynamic loading. J Appl Mech 58(4):904–909. doi:10.1115/1.2897704

    Google Scholar 

  • Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression. Int J Rock Mech Min 36(3):279–289. doi:10.1016/s0148-9062(99)00006-6

    Google Scholar 

  • Fang Q, Ruan Z, Zhai C, Jiang X, Chen L, Fang W (2012) Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature. Chin J Rock Mech Eng 31(9):1756–1765

    Google Scholar 

  • Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725–775. doi:10.1016/j.ijimpeng.2004.03.005

    Google Scholar 

  • Fischer MP, Elsworth D, Alleyamp RB, Engelder T (1996) Finite element analysis of the modified ring test for determining mode I fracture toughness. Int J Rock Mech Min 33(5):1–15. doi:10.1016/0148-9062(96)89926-8

    Google Scholar 

  • Follansbee PS, Frantz C (1983) Wave propagation in the split Hopkinson pressure bar. J Eng Mater-T ASME 105(1):61–66. doi:10.1115/1.3225620

    Google Scholar 

  • Forquin P (2012) An optical correlation technique for characterizing the crack velocity in concrete. Eur Phys J Spec Top 206:89–95. doi:10.1140/epjst/e2012-01590-6

    Google Scholar 

  • Forquin P, Gary G, Gatuingt F (2008) A testing technique for concrete under confinement at high rates of strain. Int J Impact Eng 35(6):425–446. doi:10.1016/j.ijimpeng.2007.04.007

    Google Scholar 

  • Forrestal MJ, Wright TW, Chen W (2007) The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int J Impact Eng 34(3):405–411. doi:10.1016/j.ijimpeng.2005.12.001

    Google Scholar 

  • Foster JT (2012) Comments on the validity of test conditions for Kolsky bar testing of elastic-brittle materials. Exp Mech 52(9):1559–1563. doi:10.1007/s11340-012-9592-6

    Google Scholar 

  • Fowell RJ (1995) Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min 32(1):57–64. doi:10.1016/0148-9062(94)00015-u

    Google Scholar 

  • Frew D, Forrestal M, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46. doi:10.1007/bf02323102

    Google Scholar 

  • Frew D, Forrestal M, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106. doi:10.1007/bf02411056

    Google Scholar 

  • Frew DJ, Akers SA, Chen W, Green ML (2010) Development of a dynamic triaxial Kolsky bar. Meas Sci Technol 21(10):105704. doi:10.1088/0957-0233/21/10/105704

    Google Scholar 

  • Friedman M, Logan JM (1973) Lüders’ bands in experimentally deformed sandstone and limestone. Geol Soc Am Bull 84(4):1465–1476. doi:10.1130/0016-7606(1973)84<1465:lbieds>2.0.co;2

    Google Scholar 

  • Friedman M, Perkins RD, Green SJ (1970) Observation of brittle-deformation features at the maximum stress of Westerly granite and Solnhofen limestone. Int J Rock Mech Min Sci Geomech Abstr 7(3):297–302. doi:10.1016/0148-9062(70)90043-4

    Google Scholar 

  • Fu HC, Erki MA, Seckin M (1991) Review of effects of loading rate on concrete in compression. J Struct Eng 117(12):3645–3659. doi:10.1061/(asce)0733-9445(1991)117:12(3645)

    Google Scholar 

  • Fukui K, Okubo S, Ogawa A (2004) Some aspects of loading-rate dependency of Sanjome andesite strengths. Int J Rock Mech Min 41(7):1215–1219. doi:10.1016/j.ijrmms.2004.06.001

    Google Scholar 

  • Gálvez F, Rodríguez J, Sánchez V (2002) The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics. Int J Impact Eng 27(2):161–177. doi:10.1016/S0734-743X(01)00039-2

    Google Scholar 

  • Gama BA, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223–250. doi:10.1115/1.1704626

    Google Scholar 

  • Gary G, Bailly P (1998) Behaviour of quasi-brittle material at high strain rate. Experiment and modelling. Eur J Mech A Solids 17(3):403–420. doi:10.1016/s0997-7538(98)80052-1

    Google Scholar 

  • Gerlach R, Sathianathan SK, Siviour C, Petrinic N (2011) A novel method for pulse shaping of split Hopkinson tensile bar signals. Int J Impact Eng 38(12):976–980. doi:10.1016/j.ijimpeng.2011.08.007

    Google Scholar 

  • Gilat A (2000) Torsional Kolsky bar testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:505–515

    Google Scholar 

  • Gilat A, Matrka TA (2011) A new compression intermediate strain rate testing apparatus. In: Proulx T (ed) The Society for Experimental Mechanics series, dynamic behavior of materials. Springer, New York, pp 425–429. doi:10.1007/978-1-4419-8228-5_64

    Google Scholar 

  • Gilat A, Schmidt T, Walker A (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49(2):291–302. doi:10.1007/s11340-008-9157-x

    Google Scholar 

  • Glenn LA, Jaun H (1978) Crack propagation in rock plates loaded by projectile impact. Exp Mech 18(1):35–40. doi:10.1007/bf02326555

    Google Scholar 

  • Goldsmith W, Sackman JL, Ewerts C (1976) Static and dynamic fracture strength of Barre granite. Int J Rock Mech Min Sci Geomech Abstr 13(11):303–309. doi:10.1016/0148-9062(76)91829-5

    Google Scholar 

  • Gomez JT, Shukla A, Sharma A (2001) Static and dynamic behavior of concrete and granite in tension with damage. Theor Appl Fract Mech 36(1):37–49. doi:10.1016/s0167-8442(01)00054-4

    Google Scholar 

  • Gomez JT, Shukla A, Sharma A (2002) Photoelastic evaluation of stress fields and fracture during dynamic splitting experiments. J Test Eval 30(3):186–196. doi:10.1520/JTE12306J

    Google Scholar 

  • Gong J, Malvern L (1990) Passively confined tests of axial dynamic compressive strength of concrete. Exp Mech 30(1):55–59. doi:10.1007/bf02322703

    Google Scholar 

  • Gong JC, Malvern LE, Jenkins DA (1990) Dispersion investigation in the split Hopkinson pressure bar. J Eng Mater-T ASME 112(3):309–314. doi:10.1115/1.2903329

    Google Scholar 

  • Gorham DA (1983) A numerical method for the correction of dispersion in pressure bar signals. Phys E Sci Instrum 16(6):477. doi:10.1088/0022-3735/16/6/008

    Google Scholar 

  • Gorham DA (1989) Specimen inertia in high strain-rate compression. J Phys D Appl Phys 22(12):1888. doi:10.1088/0022-3727/22/12/014

    Google Scholar 

  • Gorham DA, Pope PH, Field JE (1992) An improved method for compressive stress–strain measurements at very high strain rates. Proc R Soc Lond A 438(1902):153–170. doi:10.1098/rspa.1992.0099

    Google Scholar 

  • Grady DE (1982) Local inertial effects in dynamic fragmentation. J Appl Phys 53(1):322–325. doi:10.1063/1.329934

    Google Scholar 

  • Grady DE, Kipp ME (1987) Dynamic rock fragmentation. In: Atkinson BK (ed) Fracture mechanics of rock. Academic, London, pp 429–475

    Google Scholar 

  • Grady DE, Lipkin J (1980) Criteria for impulsive rock fracture. Geophys Res Lett 7(4):255. doi:10.1029/GL007i004p00255

    Google Scholar 

  • Gran J, Florence A, Colton J (1989) Dynamic triaxial tests of high-strength concrete. J Eng Mech 115(5):891–904. doi:10.1061/(ASCE)0733-9399(1989)115:5(891

    Google Scholar 

  • Grantham SG, Siviour CR, Proud WG, Field JE (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15(9):1867. doi:10.1088/0957-0233/15/9/025

    Google Scholar 

  • Gray GT III (2000) Classic split Hopkinson pressure bar testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:462–476

    Google Scholar 

  • Green SJ, Perkins RD (1968) Uniaxial compression tests at varying strain rates on three geologic materials. The 10th U.S. Symposium on Rock Mechanics (USRMS), Austin, TX

    Google Scholar 

  • Green S, Leasia J, Perkins R, Jones A (1972) Triaxial stress behavior of Solnhofen limestone and Westerly granite at high strain rates. J Geophys Res 77(20):3711–3724. doi:10.1029/JB077i020p03711

    Google Scholar 

  • Hadraba H, Němec O, Dlouhy I (2008) Conversion of transgranular to intergranular fracture in NiCr steels. Eng Fract Mech 75(12):3677–3691. doi:10.1016/j.engfracmech.2007.08.006

    Google Scholar 

  • Haimson B, Bobet A (2012) Introduction to suggested methods for failure criteria. Rock Mech Rock Eng 45(6):973–974. doi:10.1007/s00603-012-0274-6

    Google Scholar 

  • Hakalehto KO (1967) A study of the dynamic behaviour of rock using the Hopkinson split bar method. M.S., University of Minnesota, Minneapolis

    Google Scholar 

  • Hakalehto KO (1969) The behaviour of rock under impulse loads: a study using the Hopkinson split bar method. Acta Polytech Scand, Chem Technol Ser 81:1–60

    Google Scholar 

  • Hakalehto KO (1970) Brittle fracture of rocks under impulse loads. Int J Fract 6(3):249–256. doi:10.1007/bf00212655

    Google Scholar 

  • Hao Y, Hao H (2013) Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate. Rock Mech Rock Eng 46(2):373–388. doi:10.1007/s00603-012-0268-4

    Google Scholar 

  • Hartley CS (2008) Materials science for the experimental mechanist. In: Sharpe WN (ed) Springer handbook of experimental solid mechanics. Springer, US, pp 17–48. doi:10.1007/978-0-387-30877-7_2

    Google Scholar 

  • Hartley RS, Cloete TJ, Nurick GN (2007) An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test. Int J Impact Eng 34(10):1705–1728. doi:10.1016/j.ijimpeng.2006.09.003

    Google Scholar 

  • Hauser F (1966) Techniques for measuring stress–strain relations at high strain rates. Exp Mech 6(8):395–402. doi:10.1007/bf02326284

    Google Scholar 

  • Heard HC (1963) Effect of large changes in strain rate in the experimental deformation of Yule marble. J Geol 71(2):162–195. doi:10.1086/626892

    Google Scholar 

  • Hogan JD, Rogers RJ, Spray JG, Boonsue S (2012) Dynamic fragmentation of granite for impact energies of 6–28 J. Eng Fract Mech 79:103–125. doi:10.1016/j.engfracmech.2011.10.006

    Google Scholar 

  • Holloway DC, Patacca AM, Fourney WL (1977) Application of holographic interferometry to a study of wave propagation in rock. Exp Mech 17(8):281–289. doi:10.1007/bf02324957

    Google Scholar 

  • Hong L, Zhou Z, Yin T, Liao G, Ye Z (2009) Energy consumption in rock fragmentation at intermediate strain rate. J Cent South Univ Technol 16(4):677–682. doi:10.1007/s11771-009-0112-5

    Google Scholar 

  • Howe S, Goldsmith W, Sackman J (1974) Macroscopic static and dynamic mechanical properties of Yule marble. Exp Mech 14(9):337–346. doi:10.1007/bf02323559

    Google Scholar 

  • Hu G, Ramesh KT, Cao B, McCauley JW (2011) The compressive failure of aluminium nitride considered as a model advanced ceramic. J Mech Phys Solids 59(5):1076–1093. doi:10.1016/j.jmps.2011.02.003

    Google Scholar 

  • Huang C, Subhash G (2003) Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids. J Mech Phys Solids 51(6):1089–1105. doi:10.1016/s0022-5096(03)00002-4

    Google Scholar 

  • Huang C, Subhash G, Vitton SJ (2002) A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech Mater 34(5):267–277. doi:10.1016/s0167-6636(02)00112-6

    Google Scholar 

  • Huang S, Chen R, Xia KW (2010a) Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus. J Rock Mech Geotech Eng 2:162–168. doi:10.3724/SP.J.1235.2010.00162

    Google Scholar 

  • Huang S, Xia K, Yan F, Feng X (2010b) An experimental study of the rate dependence of tensile strength softening of Longyou sandstone. Rock Mech Rock Eng 43(6):677–683. doi:10.1007/s00603-010-0083-8

  • Huang S, Feng XT, Xia K (2011a) A dynamic punch method to quantify the dynamic shear strength of brittle solids. Rev Sci Instrum 82(5):053901–053905. doi:10.1063/1.3585983

    Google Scholar 

  • Huang S, Luo SN, Tatone B, Xia K (2011b) Dynamic fracture tests of PMMA using a dynamic semi-circular bend technique. J Mech Mater Struct 6(6):813–836. doi:10.2140/jomms.2011.6.813

    Google Scholar 

  • Huang S, Xia K, Dai F (2012) Establishment of a dynamic Mohr–Coulomb failure criterion for rocks. Int J Nonlin Sci Numer Simul 13(1):55–60. doi:10.1515/ijnsns.2011.120

    Google Scholar 

  • Hughes ML, Tedesco JW, Ross CA (1993) Numerical analysis of high strain rate splitting-tensile tests. Comput Struct 47(4–5):653–671. doi:10.1016/0045-7949(93)90349-i

    Google Scholar 

  • Islam MT, Bindiganavile V (2012) Stress rate sensitivity of Paskapoo sandstone under flexure. Can J Civ Eng 39(11):1184–1192. doi:10.1139/l2012-101

    Google Scholar 

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15(3):99–103. doi:10.1016/0148-9062(78)90003-7

    Google Scholar 

  • ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 16(2):135–140. doi:10.1016/0148-9062(79)91451-7

    Google Scholar 

  • ISRM (1983) Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int J Rock Mech Min Sci Geomech Abstr 20(6):285–290. doi:10.1016/0148-9062(83)90598-3

    Google Scholar 

  • Iwamoto T, Yokoyama T (2012) Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests: a computational study. Mech Mater 51:97–109. doi:10.1016/j.mechmat.2012.04.007

    Google Scholar 

  • Jaeger JC (1967) Failure of rocks under tensile conditions. J Rock Mech Min Sci Geomech Abst 4(2):219–227. doi:10.1016/0148-9062(67)90046-0

    Google Scholar 

  • Janach W (1976) The role of bulking in brittle failure of rocks under rapid compression. Int J Rock Mech Min Sci Geomech Abstr 13(6):177–186. doi:10.1016/0148-9062(76)91284-5

    Google Scholar 

  • Jia D, Ramesh K (2004) A rigorous assessment of the benefits of miniaturization in the Kolsky bar system. Exp Mech 44(5):445–454. doi:10.1007/bf02427955

    Google Scholar 

  • Jiang F, Vecchio KS (2009) Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl Mech Rev 62(6):060802–060839. doi:10.1115/1.3124647

    Google Scholar 

  • Jin JF, Li XB, Wang GS, Yin ZQ (2012) Failure modes and mechanisms of sandstone under cyclic impact loadings. J Cent South Univ Technol 43(4):1453–1461

    Google Scholar 

  • Johnson GR, Holmquist TJ (1992) A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures. In: Meyers MA, Murr LE, Staudhammer KP (eds) Shock-wave and high strain-rate phenomena in materials. Marcel-Dekker, New York, pp 1075–1081

    Google Scholar 

  • Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. AIP Conf Proc 309(1):981–984. doi:10.1063/1.46199

    Google Scholar 

  • Johnstone C, Ruiz C (1995) Dynamic testing of ceramics under tensile stress. Int J Solids Struct 32(17–18):2647–2656. doi:10.1016/0020-7683(94)00287-7

    Google Scholar 

  • Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25(7):803–833. doi:10.1016/0020-7683(89)90015-2

    Google Scholar 

  • Ju Y, Sudak L, Xie H (2007) Study on stress wave propagation in fractured rocks with fractal joint surfaces. Int J Solids Struct 44(13):4256–4271. doi:10.1016/j.ijsolstr.2006.11.015

    Google Scholar 

  • Kachanov LM (1958) Time of the rupture process under creep conditions. Izv Akad Nauk SSSR, Otd Tekh Nauk 8:26–31

    Google Scholar 

  • Kalthoff JF (1985) On the measurement of dynamic fracture toughnesses: a review of recent work. Int J Fract 27(3):277–298. doi:10.1007/bf00017973

    Google Scholar 

  • Kazerani T, Zhao J (2010) Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int J Numer Anal Meth Geomech 34(18):1877–1895. doi:10.1002/nag.884

    Google Scholar 

  • Khan AS, Irani FK (1987) An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite. Mech Mater 6(4):285–292. doi:10.1016/0167-6636(87)90027-5

    Google Scholar 

  • Khokhlov M, Fischer A, Rittel D (2012) Multi-scale stereo-photogrammetry system for fractographic analysis using scanning electron microscopy. Exp Mech 52(8):975–991. doi:10.1007/s11340-011-9582-0

    Google Scholar 

  • Kimberley J, Ramesh KT (2011) The dynamic strength of an ordinary chondrite. Meteor Planet Sci 46(11):1653–1669. doi:10.1111/j.1945-5100.2011.01254.x

    Google Scholar 

  • Klepaczko JR (1990) Behavior of rock-like materials at high strain rates in compression. Int J Plast 6(4):415–432. doi:10.1016/0749-6419(90)90011-3

    Google Scholar 

  • Klepaczko JR, Brara A (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25(4):387–409. doi:10.1016/s0734-743x(00)00050-6

    Google Scholar 

  • Klepaczko JR, Bassim MN, Hsu TR (1984) Fracture toughness of coal under quasi-static and impact loading. Eng Fract Mech 19(2):305–316. doi:10.1016/0013-7944(84)90025-0

    Google Scholar 

  • Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B 62(11):676. doi:10.1088/0370-1301/62/11/302

    Google Scholar 

  • Kraft RH, Molinari JF (2008) A statistical investigation of the effects of grain boundary properties on transgranular fracture. Acta Mater 56(17):4739–4749. doi:10.1016/j.actamat.2008.05.036

    Google Scholar 

  • Kubota S, Ogata Y, Wada Y, Simangunsong G, Shimada H, Matsui K (2008) Estimation of dynamic tensile strength of sandstone. Int J Rock Mech Min 45(3):397–406. doi:10.1016/j.ijrmms.2007.07.003

    Google Scholar 

  • Kuhn H, Medlin D (2000) High strain rate testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:427–559

    Google Scholar 

  • Kumar A (1968) The effect of stress rate and temperature on the strength of basalt and granite. Geophysics 33(3):501–510. doi:10.1190/1.1439947

    Google Scholar 

  • Kuruppu MD (1997) Fracture toughness measurement using chevron notched semi-circular bend specimen. Int J Fract 86(4):L33–L38

    Google Scholar 

  • Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2013) ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng. doi:10.1007/s00603-013-0422-7

  • Lagunov VA, Mambetov SA (1965) The rate of growth of cracks in rock specimens. J Appl Mech Tech Phys 6(6):64–66. doi:10.1007/bf00919315

    Google Scholar 

  • Lambert DE, Ross AC (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24(10):985–998. doi:10.1016/s0734-743x(00)00027-0

    Google Scholar 

  • Lankford JJ (1976) Dynamic strength of oil shale. Soc Petrol Eng J 16(1):17–22

    Google Scholar 

  • Lankford J (1981) The role of tensile microfracture in the strain rate dependence of compressive strength of fine-grained limestone-analogy with strong ceramics. Int J Rock Mech Min Sci Geomech Abstr 18:173–175. doi:10.1016/0148-9062(81)90742-7

    Google Scholar 

  • Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40(2):343–360. doi:10.1016/s0020-7683(02)00526-7

    Google Scholar 

  • Li Y, Ramesh KT (2007) An optical technique for measurement of material properties in the tension Kolsky bar. Int J Impact Eng 34(4):784–798. doi:10.1016/j.ijimpeng.2005.12.002

    Google Scholar 

  • Li XB, Lai HH, Gu DS (1993) Energy absorption of rock fragmentation under impulsive loads with different wave forms. Trans Nonferr Metal Soc 3(1):1–5–9

    Google Scholar 

  • Li HB, Zhao J, Li TJ (1999) Triaxial compression tests on a granite at different strain rates and confining pressures. Int J Rock Mech Min 36(8):1057–1063. doi:10.1016/s1365-1609(99)00120-3

    Google Scholar 

  • Li HB, Zhao J, Li TJ (2000a) Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int J Rock Mech Min 37(6):923–935. doi:10.1016/s1365-1609(00)00025-3

    Google Scholar 

  • Li XB, Lok TS, Zhao J, Zhao PJ (2000b) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min 37(7):1055–1060. doi:10.1016/s1365-1609(00)00037-x

    Google Scholar 

  • Li HB, Zhao J, Li TJ, Yuan JX (2001) Analytical simulation of the dynamic compressive strength of a granite using the sliding crack model. Int J Numer Anal Meth Geomech 25(9):853–869. doi:10.1002/nag.156

    Google Scholar 

  • Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39. doi:10.1007/s00603-004-0030-7

    Google Scholar 

  • Li XB, Hong L, Yin TB, Zhou ZL, Ye ZY (2008a) Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure. J Cent South Univ Technol 15(2):218–223. doi:10.1007/s11771-008-0042-7

    Google Scholar 

  • Li XB, Zhou ZL, Lok TS, Hong L, Yin TB (2008b) Innovative testing technique of rock subjected to coupled static and dynamic loads. Int J Rock Mech Min 45(5):739–748. doi:10.1016/j.ijrmms.2007.08.013

    Google Scholar 

  • Li QM, Lu YB, Meng H (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulations. Int J Impact Eng 36(12):1335–1345. doi:10.1016/j.ijimpeng.2009.04.010

    Google Scholar 

  • Li JC, Ma GW, Huang X (2010a) Analysis of wave propagation through a filled rock joint. Rock Mech Rock Eng 43(6):789–798. doi:10.1007/s00603-009-0033-5

    Google Scholar 

  • Li XB, Yin TB, Zhou ZL, Hong L, Gao K (2010b) Study of dynamic properties of siltstone under coupling effects of temperature and pressure. Chin J Rock Mech Eng 29(12):2377–2384

    Google Scholar 

  • Li HB, Li JC, Liu B, Li J, Li S, Xia X (2013) Direct tension test for rock material under different strain rates at quasi-static loads. Rock Mech Rock Eng (in press). doi:10.1007/s00603-013-0406-7

  • Liang R, Khan AS (1999) A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15(9):963–980. doi:10.1016/s0749-6419(99)00021-2

    Google Scholar 

  • Lindholm US (ed) (1971) High strain rate tests, techniques of metals research, measurement of mechanical properties, vol 5. Wiley Interscience, New York

    Google Scholar 

  • Lindholm US (1974) Review of dynamic testing techniques and material behaviour In: Harding J (ed) The 1st Conference on Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 3–21

  • Lindholm U, Yeakley L (1968) High strain-rate testing: tension and compression. Exp Mech 8(1):1–9. doi:10.1007/bf02326244

    Google Scholar 

  • Lindholm US, Yeakley LM, Nagy A (1974) The dynamic strength and fracture properties of Dresser basalt. Int J Rock Mech Min Sci Geomech Abstr 11(5):181–191. doi:10.1016/0148-9062(74)90885-7

    Google Scholar 

  • Lipkin J, Grady DE, Campbell JD (1977) Dynamic flow and fracture of rock in pure shear. The 18th U.S. Symposium on Rock Mechanics (USRMS), Keystone, pp 77–0180

    Google Scholar 

  • Lipkin J, Schuler KW, Parry T (1979) Dynamic torsional failure of limestone tubes. In: Harding J (ed) The 2nd conference on mechanical properties of materials at high rates of strain, Oxford, pp 101–110

  • Liu S, Xu J (2013) Study on dynamic characteristics of marble under impact loading and high temperature. Int J Rock Mech Min 62:51–58. doi:10.1016/j.ijrmms.2013.03.014

    Google Scholar 

  • Liu CP, Ju Y, Duan QQ (2010) Influence of internal characteristic length scale on dynamic crack propagating mechanism in rock materials. Rock Soil Mech 31(Suppl. 1):91–95

    Google Scholar 

  • Logan JM, Handin J (1970) Triaxial compression testing at intermediate strain rates. The 12th U.S. Symposium on Rock Mechanics (USRMS), Missouri, pp 70–0167

    Google Scholar 

  • Long QY, Li S, Lung CW (1991) Studies on the fractal dimension of a fracture surface formed by slow stable crack propagation. J Phys D Appl Phys 24(4):602. doi:10.1088/0022-3727/24/4/011

    Google Scholar 

  • Lou W (1994) Dynamic fracture behaviour of dry and waterlogged granites. Explo Shock Waves 14(3):249–254

    Google Scholar 

  • Lu YB, Li QM (2011) About the dynamic uniaxial tensile strength of concrete-like materials. Int J Impact Eng 38(4):171–180. doi:10.1016/j.ijimpeng.2010.10.028

    Google Scholar 

  • Lu YB, Li QM, Ma GW (2010) Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests. Int J Rock Mech Min 47(5):829–838. doi:10.1016/j.ijrmms.2010.03.013

    Google Scholar 

  • Lundberg B (1976) A split Hopkinson bar study of energy absorption in dynamic rock fragmentation. Int J Rock Mech Min Sci Geomech Abstr 13(6):187–197. doi:10.1016/0148-9062(76)91285-7

    Google Scholar 

  • Lyakhovsky V, Hamiel Y, Ben-Zion Y (2011) A non-local visco-elastic damage model and dynamic fracturing. J Mech Phys Solids 59(9):1752–1776. doi:10.1016/j.jmps.2011.05.016

    Google Scholar 

  • Ma GW, An XM (2008) Numerical simulation of blasting-induced rock fractures. Int J Rock Mech Min 45(6):966–975. doi:10.1016/j.ijrmms.2007.12.002

    Google Scholar 

  • Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J 95(6):735–739

    Google Scholar 

  • Malvern LE (1984) Experimental and theoretical approaches to characterisation of material behaviour at high rates of deformation. In: Harding J (ed) The 3rd Conference on Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 1–20

  • Malvern LE, Jenkens DA (1990) Dynamic testing of laterally confined concrete, technical report. Tyndall Air Force Base, Florida

    Google Scholar 

  • Malvern LE, Jenkinds DA, Tang T, McLure S (1991) Dynamic testing of laterally confined concrete. Micromechanics of failure of quasi brittle materials. Elsevier Applied Science, London

    Google Scholar 

  • Masuda K, Mizutani H, Yamada I (1987) Experimental study of strain-rate dependence and pressure dependence of failure properties of granite. J Phys Earth 35:37–66

    Google Scholar 

  • Meyers MA (1994) Dynamic behavior of materials. Wiley, New York

    Google Scholar 

  • Mohr D, Gary G, Lundberg B (2010) Evaluation of stress–strain curve estimates in dynamic experiments. Int J Impact Eng 37(2):161–169. doi:10.1016/j.ijimpeng.2009.09.007

    Google Scholar 

  • Morozov NF, Petrov YV (2000) Dynamics of fracture. Springer-Verlag, New York

    Google Scholar 

  • Nakano M, Kishida K, Yamauchi Y, Sogabe Y (1994) Dynamic fracture initiation in brittle materials under combined mode I/II loading. J Phys IV Fr 4(C8):695–700. doi:10.1051/jp4:19948106

    Google Scholar 

  • Nasseri MHB, Mohanty B (2008) Fracture toughness anisotropy in granitic rocks. Int J Rock Mech Min 45(2):167–193. doi:10.1016/j.ijrmms.2007.04.005

    Google Scholar 

  • Nemat-Nasser S (2000) Introduction to high strain rate testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:427–428

    Google Scholar 

  • Nemat-Nasser S, Deng H (1994) Strain-rate effect on brittle failure in compression. Acta Metall Mater 42(3):1013–1024. doi:10.1016/0956-7151(94)90295-x

    Google Scholar 

  • Nemat-Nasser S, Horii H (1982) Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res 87(B8):6805–6821. doi:10.1029/JB087iB08p06805

    Google Scholar 

  • Nemat-Nasser S, Jon BI, Starrett JE (1991) Hopkinson techniques for dynamic recovery experiments. Proc R Soc Lond A 435(1894):371–391. doi:10.1098/rspa.1991.0150

    Google Scholar 

  • Nemat-Nasser S, Isaacs J, Rome J (2000) Triaxial Hopkinson techniques. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:516–518

    Google Scholar 

  • Nicholas T (1982) Material behavior at high strain rates. In: Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR (eds) Impact dynamics. Wiley, New York, pp 277–332

    Google Scholar 

  • Nojima T, Ogawa K (1989) Impact strength of ceramics at high temperatures. In: Harding J (ed) The 4th International Conference on the Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 371–378

  • Ogata Y, Jung WJ, Kubota S, Wada Y (2004) Effect of the strain rate and water saturation for the dynamic tensile strength of rocks. Forum Mater Sci 465–466:361–366. doi:10.4028/www.scientific.net/MSF.465-466.361

    Google Scholar 

  • Olsson WA (1991) The compressive strength of tuff as a function of strain rate from 10−6 to 103/sec. Int J Rock Mech Min Sci Geomech Abstr 28(1):115–118. doi:10.1016/0148-9062(91)93241-w

    Google Scholar 

  • Omidvar M, Iskander M, Bless S (2012) Stress–strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213. doi:10.1016/j.ijimpeng.2012.03.004

    Google Scholar 

  • Ou ZC, Duan ZP, Huang FL (2010) Analytical approach to the strain rate effect on the dynamic tensile strength of brittle materials. Int J Impact Eng 37(8):942–945. doi:10.1016/j.ijimpeng.2010.02.003

    Google Scholar 

  • Ou ZC, Yan C, Duan ZP, Pi AG, Huang FL (2012) Dynamic behaviors of load-carrying capacity of brittle materials. Int J Impact Eng 42:59–65. doi:10.1016/j.ijimpeng.2011.11.002

    Google Scholar 

  • Ouchterlony F (1988) Suggested methods for determining the fracture toughness of rock. Int J Rock Mech Min 25(2):71–96. doi:10.1016/0148-9062(88)91871-2

    Google Scholar 

  • Owen DM, Zhuang S, Rosakis AJ, Ravichandran G (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminium sheets. Int J Fract 90(1):153–174. doi:10.1023/a:1007439301360

    Google Scholar 

  • Ozbolt J, Sharma A, Reinhardt H-W (2011) Dynamic fracture of concrete—compact tension specimen. Int J Solids Struct 48(10):1534–1543. doi:10.1016/j.ijsolstr.2011.01.033

    Google Scholar 

  • Paliwal B, Ramesh KT (2008) An interacting micro-crack damage model for failure of brittle materials under compression. J Mech Phys Solids 56(3):896–923. doi:10.1016/j.jmps.2007.06.012

    Google Scholar 

  • Paliwal B, Ramesh KT, McCauley JW, Chen M (2008) Dynamic compressive failure of AlON under controlled planar confinement. J Am Ceram Soc 91(11):3619–3629. doi:10.1111/j.1551-2916.2008.02712.x

    Google Scholar 

  • Pan Y, Chen W, Song B (2005) Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens. Exp Mech 45(5):440–446. doi:10.1007/bf02427992

    Google Scholar 

  • Paterson MS, Olgaard DL (2000) Rock deformation tests to large shear strains in torsion. J Struct Geol 22(9):1341–1358. doi:10.1016/s0191-8141(00)00042-0

    Google Scholar 

  • Paterson MS, Wong T-F (2005) Experimental rock deformation: The brittle field, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Pedersen RR, Simone A, Sluys LJ (2008) An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model. Eng Fract Mech 75(13):3782–3805. doi:10.1016/j.engfracmech.2008.02.004

    Google Scholar 

  • Peirs J, Verleysen P, Van Paepegem W, Degrieck J (2011) Determining the stress–strain behaviour at large strains from high strain rate tensile and shear experiments. Int J Impact Eng 38(5):406–415. doi:10.1016/j.ijimpeng.2011.01.004

    Google Scholar 

  • Pérez-Martín MJ, Erice B, Cendón DA, Gálvez F (2012) Spalling uniaxial strength of Al2O3 at high strain rates. Eur Phys J Spec Top 206(1):117–128. doi:10.1140/epjst/e2012-01593-3

    Google Scholar 

  • Perkins RD, Green SJ (1968) High speed photography in dynamic materials testing. Rev Sci Instrum 39(8):1209–1210. doi:10.1063/1.1683621

    Google Scholar 

  • Perkins RD, Green SJ, Friedman M (1970) Uniaxial stress behavior of porphyritic tonalite at strain rates to 103/second. Int J Rock Mech Min Sci Geomech Abstr 7(5):527–528, IN5–IN6, 529–535. doi:10.1016/0148-9062(70)90005-7

  • Persen LN (1975) Rock dynamics and geophysical exploration, vol 8. Developments in Geotechnical Engineering, Elsevier, New York

  • Petrov YV, Morozov NF (1994) On the modeling of fracture of brittle solids. J Appl Mech 61:710–712. doi:10.1115/1.2901518

    Google Scholar 

  • Petrov YV, Utkin AA (1989) Dependence of the dynamic strength on loading rate. Mater Sci 25(2):153–156. doi:10.1007/bf00780499

    Google Scholar 

  • Pierron F, Forquin P (2012) Ultra-high-speed full-field deformation measurements on concrete spalling specimens and stiffness identification with the virtual fields method. Strain 48(5):388–405. doi:10.1111/j.1475-1305.2012.00835.x

    Google Scholar 

  • Pierron F, Sutton M, Tiwari V (2011) Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar. Exp Mech 51(4):537–563. doi:10.1007/s11340-010-9402-y

    Google Scholar 

  • Powell CN (1979) Lateral inertia effects on rock failure in split-Hopkinson-bar experiments. M.S., Colorado State University, Golden

    Google Scholar 

  • Qi CZ, Wang MY, Qian QH (2009) Strain-rate effects on the strength and fragmentation size of rocks. Int J Impact Eng 36(12):1355–1364. doi:10.1016/j.ijimpeng.2009.04.008

    Google Scholar 

  • Rabotnov YN (1963) On the equations of state for creep. In: Progress in applied mechanics, the Prager anniversary volume. Macmillan, New York

  • Ragueneau F, Gatuingt F (2003) Inelastic behavior modelling of concrete in low and high strain rate dynamics. Comput Struct 81(12):1287–1299. doi:10.1016/S0045-7949(03)00043-9

    Google Scholar 

  • Ramesh KT (2008) High rates and impact experiments. In: Sharpe WN (ed) Springer handbook of experimental solid mechanics. Springer, US, pp 929–960. doi:10.1007/978-0-387-30877-7_33

    Google Scholar 

  • Ramesh KT, Narasimhan S (1996) Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments. Int J Solids Struct 33(25):3723–3738. doi:10.1016/0020-7683(95)00206-5

    Google Scholar 

  • Ravi-Chandar K (2004) Dynamic fracture. Elsevier Science, London

    Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25(4):247–262. doi:10.1007/bf00963460

    Google Scholar 

  • Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77(1):263–267. doi:10.1111/j.1151-2916.1994.tb06987.x

    Google Scholar 

  • Ravichandran G, Subhash G (1995) A micromechanical model for high strain rate behavior of ceramics. Int J Solids Struct 32(17–18):2627–2646. doi:10.1016/0020-7683(94)00286-6

    Google Scholar 

  • Reinhardt HW, Weerheijm J (1991) Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects. Int J Fract 51(1):31–42. doi:10.1007/bf00020851

    Google Scholar 

  • Ren X, Li J (2013) A unified dynamic model for concrete considering viscoplasticity and rate-dependent damage. Int J Damage Mech 22(4):530–555. doi:10.1177/1056789512455968

    Google Scholar 

  • Rittel D, Lee S, Ravichandran G (2002) A shear-compression specimen for large strain testing. Exp Mech 42(1):58–64. doi:10.1007/bf02411052

    Google Scholar 

  • Rodríguez J, Navarro C, Sánchez V (1994) Splitting tests: an alternative to determine the dynamic tensile strength of ceramic materials. J Phys IV Fr 4(C8):101–106. doi:10.1051/jp4:1994815

    Google Scholar 

  • Rome J, Isaacs J, Nemat-Nasser S (2004) Hopkinson techniques for dynamic triaxial compression tests. In: Gdoutos E (ed) Recent advances in experimental mechanics. Springer, The Netherlands, pp 3–12. doi:10.1007/0-306-48410-2_1

    Google Scholar 

  • Rosakis AJ (1999) Explosion at the parthenon: can we pick up the pieces? Report No. CalCIT SM report 99-3. California Institute of Technology, Pasadena

    Google Scholar 

  • Ross CA, Thompson PY, Tedesco JW (1989) Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86(5):475–481

    Google Scholar 

  • Rossi P (1991) A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates. Mater Struct 24(6):422–424. doi:10.1007/bf02472015

    Google Scholar 

  • Rossi P, Toutlemonde F (1996) Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms. Mater Struct 29(2):116–118. doi:10.1007/bf02486201

    Google Scholar 

  • Rossi P, Van Mier J, Toutlemonde F, Le Maou F, Boulay C (1994) Effect of loading rate on the strength of concrete subjected to uniaxial tension. Mater Struct 27(5):260–264. doi:10.1007/bf02473042

    Google Scholar 

  • Ruiz G, Ortiz M, Pandolfi A (2000) Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int J Numer Meth Eng 48(7):963–994. doi:10.1002/(sici)1097-0207(20000710)48:7<963:aid-nme908>3.0.co;2-x

    Google Scholar 

  • Saksala T (2010) Damage-viscoplastic consistency model with a parabolic cap for rocks with brittle and ductile behavior under low-velocity impact loading. Int J Numer Anal Meth Geomech 34(13):1362–1386. doi:10.1002/nag.868

    Google Scholar 

  • Sato K, Kawakita M, Kinoshita S (1981) The dynamic fracture properties of rocks under confining pressure. Mem Fac Eng, Hokkaido Univ 15(4):467–478

    Google Scholar 

  • Schardin H (1959) Velocity effects in fracture. In: Averbach BL, Felbeck DK, Thomas DA (eds) Fracture. Wiley, New York, pp 297–330

    Google Scholar 

  • Schuler H, Mayrhofer C, Thoma K (2006) Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. Int J Impact Eng 32(10):1635–1650. doi:10.1016/j.ijimpeng.2005.01.010

    Google Scholar 

  • Serdengecti S, Boozer GD (1961) The effects of strain rate and temperature on the behavior of rocks subjected to triaxial compression. The 4th U.S. Symposium on Rock Mechanics (USRMS), Pennsylvania, pp 83–97

    Google Scholar 

  • Shan R, Jiang Y, Li B (2000) Obtaining dynamic complete stress–strain curves for rock using the split Hopkinson pressure bar technique. Int J Rock Mech Min 37(6):983–992. doi:10.1016/s1365-1609(00)00031-9

    Google Scholar 

  • Shi W, Wu Y, Wu L (2007) Quantitative analysis of the projectile impact on rock using infrared thermography. Int J Impact Eng 34(5):990–1002. doi:10.1016/j.ijimpeng.2006.03.002

    Google Scholar 

  • Sierakowski RL (1997) Strain rate effects in composites. Appl Mech Rev 50(12):741–761. doi:10.1115/1.3101860

    Google Scholar 

  • Silva C, Rosa P, Martins P (2009) An innovative electromagnetic compressive split Hopkinson bar. Int J Mech Mater Des 5(3):281–288. doi:10.1007/s10999-009-9101-y

    Google Scholar 

  • Silva C, Rosa P, Martins P (2012) Electromagnetic cam driven compression testing equipment. Exp Mech 52(8):1211–1222. doi:10.1007/s11340-011-9576-y

    Google Scholar 

  • Siviour CR, Grantham SG (2009) High resolution optical measurements of specimen deformation in the split Hopkinson pressure bar. Imag Sci J 57(6):333–343. doi:10.1179/174313109x454792

    Google Scholar 

  • Siviour CR, Arthington MR, Wielewski E, Petrinic N (2012) Increasing data from high rate characterization experiments using optical reconstruction. AIP Conf Proc 1426(1):438–441. doi:10.1063/1.3686312

    Google Scholar 

  • Smirnov V, Petrov Y, Bratov V (2012) Incubation time approach in rock fracture dynamics. Sci China, Ser G 55(1):78–85. doi:10.1007/s11433-011-4579-3

    Google Scholar 

  • Song B, Syn C, Grupido C, Chen W, Lu WY (2008) A long split Hopkinson pressure bar (LSHPB) for intermediate-rate characterization of soft materials. Exp Mech 48(6):809–815. doi:10.1007/s11340-007-9095-z

    Google Scholar 

  • Spray JG (2010) Frictional melting processes in planetary materials: from hypervelocity impact to earthquakes. Annu Rev Earth Planet Sci 38(1):221–254. doi:10.1146/annurev.earth.031208.100045

    Google Scholar 

  • Stacey TR (1980) A simple device for the direct shear-strength testing of intact rock. J S Afr Inst Min Metall 80(3):129–130

    Google Scholar 

  • Steverding B, Lehnigk SH (1970) Response of cracks to impact. J Appl Phys 41(5):2096–2099. doi:10.1063/1.1659170

    Google Scholar 

  • Stowe RL, Ainsworth DL (1968) Effect of rate of loading on strength and Young’s modulus of elasticity of rock. The 10th U.S. Symposium on Rock Mechanics (USRMS), Austin, pp 3–34

    Google Scholar 

  • Subhash G, Maiti S, Geubelle PH, Ghosh D (2008) Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J Am Ceram Soc 91(9):2777–2791. doi:10.1111/j.1551-2916.2008.02624.x

    Google Scholar 

  • Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  • Swan G, Cook J, Bruce S, Meehan R (1989) Strain rate effects in Kimmeridge Bay shale. Int J Rock Mech Min Sci Geomech Abstr 26(2):135–149. doi:10.1016/0148-9062(89)90002-8

    Google Scholar 

  • Sylven ET, Agarwal S, Briant CL, Cleveland RO (2004) High strain rate testing of kidney stones. J Mater Sci Mater Med 15(5):613–617. doi:10.1023/B:JMSM.0000026383.94515.a8

    Google Scholar 

  • Tang C, Xu X (1990) A new method for measuring dynamic fracture toughness of rock. Eng Fract Mech 35(4–5):783–791. doi:10.1016/0013-7944(90)90162-a

    Google Scholar 

  • Taylor LM, Chen E-P, Kuszmaul JS (1986) Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput Meth Appl Mech Eng 55(3):301–320. doi:10.1016/0045-7825(86)90057-5

    Google Scholar 

  • Tedesco JW, Ross CA (1998) Strain-rate-dependent constitutive equations for concrete. J Press Vess-T ASME 120(4):398–405. doi:10.1115/1.2842350

    Google Scholar 

  • Tedesco JW, Ross CA, Brunair RM (1989) Numerical analysis of dynamic split cylinder tests. Comput Struct 32(3–4):609–624. doi:10.1016/0045-7949(89)90350-7

    Google Scholar 

  • Toutlemonde F, Gary G (2009) Dynamic behavior of concrete: Experimental aspects. In: Mazars J, Millard A (eds) Dynamic behavior of concrete and seismic engineering. ISTE Ltd, London, pp 1–54. doi:10.1002/9780470611555.ch1

  • Tuler FR, Butcher BM (1968) A criterion for the time dependence of dynamic fracture. Int J Fract 4(4):431–437. doi:10.1007/bf00186808

    Google Scholar 

  • Ulusay R, Gokceoglu C, Sulukcu S (2001) Draft ISRM suggested method for determining block punch strength index (BPI). Int J Rock Mech Min 38(8):1113–1119. doi:10.1016/s1365-1609(01)00078-8

    Google Scholar 

  • Van de Ven M, Smit AF, Krans RL (1997) Possibilities of a semi-circular bending test. The 8th International Conference on Asphalt Pavements, Seattle, pp 939–950

    Google Scholar 

  • Walley SM (2010) Historical review of high strain rate and shock properties of ceramics relevant to their application in armour. Adv Appl Ceram 109(8):446–466. doi:10.1179/174367609x422180

    Google Scholar 

  • Wang S, Liu KX (2011) Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure. Mater Sci Eng A 528(21):6463–6468. doi:10.1016/j.msea.2011.05.019

    Google Scholar 

  • Wang EZ, Shrive NG (1995) Brittle fracture in compression: mechanisms, models and criteria. Eng Fract Mech 52(6):1107–1126. doi:10.1016/0013-7944(95)00069-8

    Google Scholar 

  • Wang Y, Tonon F (2011) Dynamic validation of a discrete element code in modeling rock fragmentation. Int J Rock Mech Min 48(4):535–545. doi:10.1016/j.ijrmms.2011.02.003

    Google Scholar 

  • Wang WM, Sluys LJ, de Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Numer Meth Eng 40(20):3839–3864. doi:10.1002/(SICI)1097-0207(19971030)40:20<3839::AID-NME245>3.0.CO;2-6

    Google Scholar 

  • Wang QZ, Jia XM, Kou SQ, Zhang ZX, Lindqvist PA (2004) The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min 41(2):245–253. doi:10.1016/s1365-1609(03)00093-5

    Google Scholar 

  • Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163(5):1091–1100. doi:10.1007/s00024-006-0056-8

    Google Scholar 

  • Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41(3):252–260. doi:10.1016/j.mechmat.2008.10.004

    Google Scholar 

  • Wang B, Li X, Yin T, Ma C, Yin Z, Li Z (2010a) Split Hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturated sandstone. Chin J Rock Mech Eng 29(5):1003–1009

    Google Scholar 

  • Wang LL, Zhou FH, Sun ZJ, Wang YZ, Shi SQ (2010b) Studies on rate-dependent macro-damage evolution of materials at high strain rates. Int J Damage Mech 19(7):805–820. doi:10.1177/1056789509359654

    Google Scholar 

  • Wang QZ, Zhang S, Xie HP (2010c) Rock dynamic fracture toughness tested with holed-cracked flattened Brazilian discs diametrically impacted by SHPB and its size effect. Exp Mech 50(7):877–885. doi:10.1007/s11340-009-9265-2

    Google Scholar 

  • Wang QZ, Feng F, Ni M, Gou XP (2011a) Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Eng Fract Mech 78(12):2455–2469. doi:10.1016/j.engfracmech.2011.06.004

    Google Scholar 

  • Wang SS, Zhang MH, Quek ST (2011b) Effect of specimen size on static strength and dynamic increase factor of high-strength concrete from SHPB test. J Test Eval 39(5):898–907. doi:10.1520/JTE103370

    Google Scholar 

  • Weerasooriya T, Moy P, Casem D, Cheng M, Chen W (2006) A four point bend technique to determine dynamic fracture toughness of ceramics. J Am Ceram Soc 89(3):990–995. doi:10.1111/j.1551-2916.2005.00896.x

    Google Scholar 

  • Whittles DN, Kingman S, Lowndes I, Jackson K (2006) Laboratory and numerical investigation into the characteristics of rock fragmentation. Miner Eng 19(14):1418–1429. doi:10.1016/j.mineng.2006.02.004

    Google Scholar 

  • Wu PP (1971) The split Hopkinson bar method of rock testing. M.S., Colorado School of Mines, Golden

    Google Scholar 

  • Wu H, Zhang Q, Huang F, Jin Q (2005) Experimental and numerical investigation on the dynamic tensile strength of concrete. Int J Impact Eng 32(1–4):605–617. doi:10.1016/j.ijimpeng.2005.05.008

    Google Scholar 

  • Wu W, Li J, Zhao J (2012) Loading rate dependency of dynamic responses of rock joints at low loading rate. Rock Mech Rock Eng 45(3):421–426. doi:10.1007/s00603-011-0212-z

    Google Scholar 

  • Xia K (2013a) A Mohr–Coulomb failure criterion for rocks subjected to dynamic loading. In: Yang Q, Zhang J-M, Zheng H, Yao Y (eds) Constitutive modeling of geomaterials. Springer series in geomechanics and geoengineering. Springer, Berlin, pp 367–370. doi:10.1007/978-3-642-32814-5_51

    Google Scholar 

  • Xia K (2013b) Status of characterization of strength and fracture properties of rocks under dynamic loading. In: Proceedings of the 10th international symposium on rock fragmentation by blasting, FRAGBLAST, New Delhi, pp 41–51

  • Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min 45(6):879–887. doi:10.1016/j.ijrmms.2007.09.013

    Google Scholar 

  • Xie H, Chen Z (1988) Fractal geometry and fracture of rock. Acta Mech Sin 4(3):255–264. doi:10.1007/bf02486657

    Google Scholar 

  • Green SJ, Perkins RD (1969) Uniaxial compression tests at strain rates from 0.0001/sec to 1000/sec on three geologic materials. General Motors Technical Center, Materials and Structures Lab Report, Warren

    Google Scholar 

  • Yan F, Feng XT, Chen R, Xia K, Jin C (2012) Dynamic tensile failure of the rock interface between tuff and basalt. Rock Mech Rock Eng 45(3):341–348. doi:10.1007/s00603-011-0177-y

    Google Scholar 

  • Yang LM, Shim VPW (2005) An analysis of stress uniformity in split Hopkinson bar test specimens. Int J Impact Eng 31(2):129–150. doi:10.1016/j.ijimpeng.2003.09.002

    Google Scholar 

  • Yang WJ, Yu CT, Kobayashi AS (1991) SEM quantification of transgranular vs intergranular fracture. J Am Ceram Soc 74(2):290–295. doi:10.1111/j.1151-2916.1991.tb06877.x

    Google Scholar 

  • Yang RS, Yue ZW, Sun ZH, Xiao TS, Guo DM (2009) Dynamic fracture behavior of rock under impact load using the caustics method. Min Sci Technol 19(1):79–83. doi:10.1016/s1674-5264(09)60015-6

    Google Scholar 

  • Yin TB, Li XB, Xia K, Huang S (2012a) Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite. Rock Mech Rock Eng 45(6):1087–1094. doi:10.1007/s00603-012-0240-3

    Google Scholar 

  • Yin ZQ, Li XB, Jin JF, He XQ, Du K (2012b) Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading. Trans Nonferr Metal Soc 22(1):175–184. doi:10.1016/s1003-6326(11)61158-8

    Google Scholar 

  • Young C, Powell CN (1979) Lateral inertia effects on rock failure in split-Hopkinson-bar experiments. The 20th U.S. Symposium on Rock Mechanics (USRMS), Austin, pp 79–0299

    Google Scholar 

  • Yu Y (1992) Study on dynamic characteristic of rocks using triaxial SHPB. Chin J Geotech Eng 14(3):76–79

    Google Scholar 

  • Yu Y, Zhang ZX (1995) Determining critical time of rock dynamic fracture by dynamic Moire method. J Univ Sci Tech Beijing 2(2):109–113

    Google Scholar 

  • Yu Y, Zhang J, Zhang J (2009) A modified Brazilian disk tension test. Int J Rock Mech Min 46(2):421–425. doi:10.1016/j.ijrmms.2008.04.008

    Google Scholar 

  • Yuan F, Prakash V (2008) Use of a modified torsional Kolsky bar to study frictional slip resistance in rock-analog materials at coseismic slip rates. Int J Solids Struct 45(14–15):4247–4263. doi:10.1016/j.ijsolstr.2008.03.012

    Google Scholar 

  • Yuan F, Prakash V, Tullis T (2011) Origin of pulverized rocks during earthquake fault rupture. J Geophys Res 116(B6):B06309. doi:10.1029/2010jb007721

    Google Scholar 

  • Zang A, Stephansson O (2010) Rock fracture criteria. In: Zang A, Stephansson O (eds) Stress field of the earth’s crust. Springer, The Netherlands, pp 37–62. doi:10.1007/978-1-4020-8444-7_3

  • Zavattieri PD, Espinosa HD (2001) Grain level analysis of crack initiation and propagation in brittle materials. Acta Mater 49(20):4291–4311. doi:10.1016/s1359-6454(01)00292-0

    Google Scholar 

  • Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32. doi:10.1063/1.1707363

    Google Scholar 

  • Zhang S, Wang QZ (2009) Determination of rock fracture toughness by split test using five types of disc specimens. Rock Soil Mech 30(1):12–18

    Google Scholar 

  • Zhang QB, Zhao J (2013a) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min 60:423–439. doi:10.1016/j.ijrmms.2013.01.005

    Google Scholar 

  • Zhang QB, Zhao J (2013b) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309. doi:10.1016/j.engfracmech.2013.02.009

    Google Scholar 

  • Zhang QB, Zhao J (2013c) A micromechanics-based model for dynamic behaviour of rock. Int J Rock Mech Min submitted

  • Zhang QB, Zhao J (2013d) Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms. Rock Mech Rock Eng submitted

  • Zhang ZX, Kou SQ, Yu J, Yu Y, Jiang LG, Lindqvist PA (1999) Effects of loading rate on rock fracture. Int J Rock Mech Min 36(5):597–611. doi:10.1016/s0148-9062(99)00031-5

    Google Scholar 

  • Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min 37(5):745–762. doi:10.1016/s1365-1609(00)00008-3

    Google Scholar 

  • Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001a) Effects of high temperatures on dynamic rock fracture. Int J Rock Mech Min 38(2):211–225. doi:10.1016/s1365-1609(00)00071-x

    Google Scholar 

  • Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001b) On study of influences of loading rate on fractal dimensions of fracture surfaces in gabbro. Rock Mech Rock Eng 34(3):235–242. doi:10.1007/s006030170011

    Google Scholar 

  • Zhang M, Wu HJ, Li QM, Huang FL (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments. Int J Impact Eng 36(12):1327–1334. doi:10.1016/j.ijimpeng.2009.04.009

    Google Scholar 

  • Zhang XX, Yu RC, Ruiz G, Tarifa M, Camara MA (2010) Effect of loading rate on crack velocities in HSC. Int J Impact Eng 37(4):359–370. doi:10.1016/j.ijimpeng.2009.10.002

    Google Scholar 

  • Zhao YP (1995) Suggestion of a new criterion of dynamic fracture initiation. Int J Fract 71(4):R77–R78. doi:10.1007/bf00037822

    Google Scholar 

  • Zhao J (2000) Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int J Rock Mech Min 37(7):1115–1121. doi:10.1016/s1365-1609(00)00049-6

    Google Scholar 

  • Zhao J (2011) An overview of some recent progress in rock dynamics research. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, USA, pp 5–33

    Google Scholar 

  • Zhao H, Gary G (1996) On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains. Int J Solids Struct 33(23):3363–3375. doi:10.1016/0020-7683(95)00186-7

    Google Scholar 

  • Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202. doi:10.1016/s0022-5096(96)00117-2

    Google Scholar 

  • Zhao J, Li HB (2000) Experimental determination of dynamic tensile properties of a granite. Int J Rock Mech Min 37(5):861–866. doi:10.1016/s1365-1609(00)00015-0

    Google Scholar 

  • Zhao J, Li HB, Zhao YH (1998) Dynamics strength tests of the Bukit Timah granite. Geotechnical research report NTU/GT/98-2. Nanyang Technological University, Singapore

    Google Scholar 

  • Zhao J, Li HB, Wu MB, Li TJ (1999a) Dynamic uniaxial compression tests on a granite. Int J Rock Mech Min 36(2):273–277. doi:10.1016/s0148-9062(99)00008-x

    Google Scholar 

  • Zhao J, Zhou YX, Hefny AM, Cai JG, Chen SG, Li HB, Liu JF, Jain M, Foo ST, Seah CC (1999b) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Sp Tech 14(4):513–526. doi:10.1016/s0886-7798(00)00013-4

    Google Scholar 

  • Zhao J, Zhou YX, Ma GW (2008) Rock failure, wave propagation and tunnel stability under dynamic loads. In: Majdi A (ed) The 5th Asian rock mechanics symposium, Tehran, pp 167–181

  • Zhao PD, Lu FY, Chen R, Lin YL, Li JL, Lu L, Sun GL (2011) A technique for combined dynamic compression-shear test. Rev Sci Instrum 82(3):035110-035110. doi:10.1063/1.3557826

    Google Scholar 

  • Zhao J, Zhou YX, Xia KW (2012) Advances in rock dynamics modelling, testing and engineering. In: Qian QH, Zhou YX (eds) Harmonising rock engineering and the environment, CRC Press/Balkema, The Netherlands, pp 147–154

  • Zhou XQ, Hao H (2008) Modelling of compressive behaviour of concrete-like materials at high strain rate. Int J Solids Struct 45(17):4648–4661. doi:10.1016/j.ijsolstr.2008.04.002

    Google Scholar 

  • Zhou YX, Zhao J (eds) (2011) Advances in rock dynamics and applications. CRC Press, USA

    Google Scholar 

  • Zhou ZL, Li XB, Ye ZY, Liu KW (2010) Obtaining constitutive relationship for rate-dependent rock in SHPB tests. Rock Mech Rock Eng 43(6):697–706. doi:10.1007/s00603-010-0096-3

    Google Scholar 

  • Zhou ZL, Li XB, Liu AH, Zou Y (2011) Stress uniformity of split Hopkinson pressure bar under half-sine wave loads. Int J Rock Mech Min 48(4):697–701. doi:10.1016/j.ijrmms.2010.09.006

    Google Scholar 

  • Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112. doi:10.1016/j.ijrmms.2011.10.004

    Google Scholar 

  • Zhou ZL, Li XB, Zou Y, Jiang YH, Li GN (2013a) Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mech Rock Eng (in press). doi:10.1007/s00603-013-0441-4

  • Zhou ZL, Zou Y, Li XB, Jiang YH (2013b) Stress evolution and failure process of Brazilian disc under impact. J Cent South Univ 20(1):172–177. doi:10.1007/s11771-013-1473-3

    Google Scholar 

  • Zhu WC (2008) Numerical modelling of the effect of rock heterogeneity on dynamic tensile strength. Rock Mech Rock Eng 41(5):771–779. doi:10.1007/s00603-006-0117-4

    Google Scholar 

  • Zhu WC, Tang CA (2006) Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min 43(2):236–252. doi:10.1016/j.ijrmms.2005.06.008

    Google Scholar 

  • Zhu WC, Tang CA, Huang ZP, Liu JS (2004) A numerical study of the effect of loading conditions on the dynamic failure of rock. Int J Rock Mech Min 41(Suppl 1):348–353. doi:10.1016/j.ijrmms.2004.03.065

    Google Scholar 

  • Zhu WC, Bai Y, Li XB, Niu LL (2012) Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests. Int J Impact Eng 49:142–157. doi:10.1016/j.ijimpeng.2012.04.002

    Google Scholar 

  • Zuo QH, Addessio FL, Dienes JK, Lewis MW (2006) A rate-dependent damage model for brittle materials based on the dominant crack. Int J Solids Struct 43(11–12):3350–3380. doi:10.1016/j.ijsolstr.2005.06.083

    Google Scholar 

  • Zuo QH, Disilvestro D, Richter JD (2010) A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading. Int J Solids Struct 47(20):2790–2798. doi:10.1016/j.ijsolstr.2010.06.009

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Swiss National Science Foundation (no. 200020_129757) and the China Scholarship Council (CSC). During the preparation of this study, the authors contacted many researchers whose research is relevant to the subject matter, and we appreciate the help and support that they provided by sharing their knowledge and resources. They are Gérard Gary (École Polytechnique), Yang Ju and Ruidong Peng (China University of Mining and Technology), Tohid Kazerani (University of Nottingham), Jianchun Li (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences), Xibing Li (Central South University), Xiao Li (Institute of Geology and Geophysics, Chinese Academy of Sciences), Zhuocheng Ou (Beijing Institute of Technology), Yuri Petrov (St. Petersburg State University, Russia), Fabrice Pierron (University of Southampton), Chun’an Tang (Dalian University of Technology), David Taylor (Trinity College, Ireland), Lili Wang (Ningbo University), Qizhi Wang (Sichuan University), Kaiwen Xia (University of Toronto), Songlin Xu (University of Science and Technology of China), Zhiqiang Yin (Anhui University of Science and Technology), Gaofeng Zhao (The University of New South Wales), Xiaobao Zhao (Nanjing University) and Wancheng Zhu (Northeastern University). A special acknowledgement is given to Mrs Haiying Bian (editorial office of Geomechanics and Geoengineering—An International Journal), who provided language editing for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q.B., Zhao, J. A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech Rock Eng 47, 1411–1478 (2014). https://doi.org/10.1007/s00603-013-0463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0463-y

Keywords

Navigation