Skip to main content
Log in

Analysis of a Large Rock Slope Failure on the East Wall of the LAB Chrysotile Mine in Canada: LiDAR Monitoring and Displacement Analyses

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A major mining slope failure occurred in July 2012 on the East wall of the LAB Chrysotile mine in Canada. The major consequence of this failure was the loss of the local highway (Road 112), the main economic link between the region and the Northeast USA. This paper is part of a proposed integrated remote sensing–numerical modelling methodology to analyze mining rock slope stability. This paper presents the Light Detection and Ranging (LiDAR) monitoring of this slope failure. The main focus is the investigation of that rock slide using both terrestrial (TLS) and airborne (ALS) LiDAR scanning. Since 2010, four ALS and 14 TLS were performed to characterize and monitor the slide. First, laser scanning was used to investigate the geometry of the slide. The failure zone was 1100 m by 250 m in size with a mobilized volume of 25 hm3. Laser scanning was then used to investigate the rock slide’s 3D displacement, thereby enabling a better understanding of the sliding kinematics. The results clearly demonstrate the ability of the proposed approach to monitor and quantify large-scale rock mass failure. The slope was monitored for a period of 5 years, and the total displacement was measured at every survey. The maximum cumulative total displacement reached was 145 m. This paper clearly shows the ability of LiDAR scanning to provide valuable quantitative information on large rock mass failures involving very large displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abellán A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365–372. doi:10.5194/nhess-9-365-2009

    Article  Google Scholar 

  • Abellán A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171. doi:10.1016/j.geomorph.2010.03.016

    Article  Google Scholar 

  • Abellán A, Vilaplana JM, Calvet J, García-Sellés D, Asension E (2011) Rockfall monitoring by Terrestrial Laser Scanning—case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Nat Hazards Earth Syst Sci. doi:10.5194/nhess-11-829-2011

    Google Scholar 

  • Abellán A, Oppikofer T, Jaboyedoff M, Rosser NJ, Lim M, Lato MJ (2014) Terrestrial laser scanning of rock slope instabilities. Earth Surf Process Landf 39:80–97. doi:10.1002/esp.3493

    Article  Google Scholar 

  • ArcGIS (2010) Desktop Service Pack 5, ArcMAP v10.0

  • Beauchamp Y (1994) Retro analyse de l’instabilité de décembre 1993 à la paroi sud-Ouest de la rampe principale, LAB Chrysotile mine

  • Bonnaffe F, Jennette D, Andrews J (2007) A method for acquiring and processing ground-based lidar data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models. Geosphere 3:501–510. doi:10.1130/ges00104.1

    Article  Google Scholar 

  • Bye AR, Bell FG (2001) Stability assessment and slope design at sandsloot open pit, South Africa. Int J Rock Mech Min Sci 38:449–466. doi:10.1016/s1365-1609(01)00014-4

    Article  Google Scholar 

  • Caduff R, Schlunegger F, Kos A, Wiesmann A (2015) A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surf Process Landf 40:208–228. doi:10.1002/esp.3656

    Article  Google Scholar 

  • Carrea D, Abellan A, Derron MH, Gauvin N, Jaboyedoff M (2012) Using 3D surface datasets to understand landslide evolution: from analogue models to real case study. In: Eberhardt E, Froese C, Turner K, Leroueil S (eds) Landslides and engineered slopes: protecting society through improved understanding. CRC Press, Boca Rotan, pp 575–579

    Google Scholar 

  • CloudCompare V2 (2016) License: GNU GPL (General Public Licence) v. 2.7, Widows 64 bit. http://www.danielgm.net/cc. Accessed 3 Nov 2016

  • Corsini A, Borgatti L, Coren F, Vellico M (2007) Use of multitemporal airborne lidar surveys to analyse post-failure behaviour of earth slides. Can J Remote Sens 33:116–120. doi:10.5589/m07-015

    Article  Google Scholar 

  • Curtaz M, Ferrero AM, Roncella R, Segalini A, Umili G (2014) Terrestrial Photogrammetry and numerical modelling for the stability analysis of rock slopes in high mountain areas: aiguilles Marbrées case. Rock Mech Rock Eng 47:605–620. doi:10.1007/s00603-013-0446-z

    Article  Google Scholar 

  • Dick GJ, Eberhardt E, Cabrejo-Liévano AG, Stead D, Rose ND (2014) Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can Geotech J 52:515–529. doi:10.1139/cgj-2014-0028

    Article  Google Scholar 

  • Eberhardt E, Stead D (2011) Geotechnical instrumentation. In: Darling P (ed) SME mining engineering handbook, vol 1, 3rd edn. Society for Mining, Metallurgy, and Exploration, Englewood, pp 551–572

    Google Scholar 

  • Eberhardt E, Bonzanigo L, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part II. Mitigation measures and numerical modelling of deep drainage at Campo Vallemaggia. Can Geotech J 44:1181–1199. doi:10.1139/T07-044

    Article  Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665. doi:10.1007/s00603-008-0010-4

    Article  Google Scholar 

  • Froese CR, Moreno F, Jaboyedoff M, Cruden DM (2009) 25 years of movement monitoring on South Peak, Turtle Mountain: understanding the hazard. Can Geotech J 46:256–269. doi:10.1139/t08-121

    Article  Google Scholar 

  • Fruneau B, Achache J, Delacourt C (1996) Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry. Tectonophysics 265:181–190. doi:10.1016/S0040-1951(96)00047-9

    Article  Google Scholar 

  • Gordon P, Charles T (2008) Terrestrial laser scanners. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning principles and processing. CRC Press, pp 87–128. doi:10.1201/9781420051438.ch3

  • Grenon M, Caudal P, Amoushahi S, Turmel D, Locat J (2016) Analysis of a large rock slope failure on the east wall of the LAB chrysotile mine in Canada: back analysis, impact of water infilling and mining activity. Rock Mech Rock Eng. doi:10.1007/s00603-016-1116-8

    Google Scholar 

  • InnovMetric Software Inc. (2012) Polyworks v. 12.0.17, build 5761, 64 bit

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron M-H, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28. doi:10.1007/s11069-010-9634-2

    Article  Google Scholar 

  • Lato MJ, Diederichs MS, Hutchinson DJ, Harrap R (2012) Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols. Nat Hazards 60:831–864. doi:10.1007/s11069-011-9872-y

    Article  Google Scholar 

  • Lato MJ, Hutchinson DJ, Gauthier D, Edwards T, Ondercin M (2014) Comparison of airborne laser scanning, terrestrial laser scanning, and terrestrial photogrammetry for mapping differential slope change in mountainous terrain. Can Geotech J 52:129–140. doi:10.1139/cgj-2014-0051

    Article  Google Scholar 

  • Michoud C, Abellan A, Derron M.H, Jaboyedoff M (2010) Review of techniques for landslide detection, fast characterization, rapid mapping and long-term monitoring. SafeLand deliverable 4.1. https://www.dropbox.com/s/q42p2ht4jop3rqq/2010%20SAFELAND_Deliverable_4.1.pdf?dl=0. Accessed 3 Nov 2016

  • Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogramm Remote Sens 63:142–154. doi:10.1016/j.isprsjprs.2007.07.008

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Keusen H-R (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1:531–535. http://www.nature.com/ngeo/journal/v1/n8/suppinfo/ngeo258_S1.html

  • Optech (2011) ILRIS 3D-ER, summary specification sheet. Optech, Ontario

    Google Scholar 

  • Pesci A, Casula G, Boschi E (2011) Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): detailed deformation patterns of two ancient leaning buildings. J Cult Herit 12:117–127

    Article  Google Scholar 

  • Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazards Earth Syst Sci 9(6):1921–1928. doi:10.5194/nhess-9-1921-2009

    Article  Google Scholar 

  • Read J, Stacey P (2009) Guidelines for open pit slope design. CSIRO Publishing, Clayton

    Google Scholar 

  • Squarzoni C, Delacourt C, Allemand P (2003) Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Eng Geol 68:53–66. doi:10.1016/S0013-7952(02)00198-9

    Article  Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446. doi:10.1080/01431160601024234

    Article  Google Scholar 

  • Teza G et al (2008) Ground-based monitoring of high risk landslides through joint use of laser scanner and interferometric radar. Int J Remote Sens 29:4735–4756. doi:10.1080/01431160801942227

    Article  Google Scholar 

  • Travelletti J, Oppikofer T, Delacourt C, Malet JP, Jaboyedoff M (2008) Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int. Arch. Photogramm. Remote Sens 37(part B5):485–490

    Google Scholar 

  • Turmel D, Leblanc J, Locat J, Grenon M (2015) Établissement de scénarios d’accélération et de vitesse de grands glissements rocheux actifs: le cas de Black Lake. In: Proceedings of the 68th Canadian geotechnical conference, GeoQuébec, Québec. Paper 507

  • Woo K-S, Eberhardt E, Rabus B, Stead D, Vyazmensky A (2012) Integration of field characterisation, mine production and InSAR monitoring data to constrain and calibrate 3-D numerical modelling of block caving-induced subsidence. Int J Rock Mech Min Sci 53:166–178. doi:10.1016/j.ijrmms.2012.05.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Transports Québec and the Natural Sciences and Engineering Research Council of Canada. The authors would also like to thank Pierre Dorval and François Bossé (Service Géotechnique et Géologie-Transports Québec) for providing airborne LiDAR survey data, pictures and technical advice. Finally, the authors are grateful to Michel Vallée and Gilles Bonin for providing easy mine site access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grenon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caudal, P., Grenon, M., Turmel, D. et al. Analysis of a Large Rock Slope Failure on the East Wall of the LAB Chrysotile Mine in Canada: LiDAR Monitoring and Displacement Analyses. Rock Mech Rock Eng 50, 807–824 (2017). https://doi.org/10.1007/s00603-016-1145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1145-3

Keywords

Navigation