Skip to main content
Log in

The Influence of Fracturing Fluids on Fracturing Processes: A Comparison Between Water, Oil and SC-CO2

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Anazi H, Pope G, Sharma M, Metcalfe R (2002) Laboratory measurements of condensate blocking and treatment for both low and high permeability rocks. In: Proceedings of SPE annual technical conference and exhibition, document ID SPE-77546-MS, San Antonio, Texas, USA

  • Alpern J, Marone C, Elsworth D, Belmonte A, Connelly P (2012) Exploring the physicochemical processes that govern hydraulic fracture through laboratory experiments. In: Proceedings of the 46th US rock mechanics/geomechanics symposium, document ID ARMA-2012-678, Chicago, Illinois, USA

  • Chen Y, Nagaya Y, Ishida T (2015) Observations of fractures induced by hydraulic fracturing in anisotropic granite. Rock Mech Rock Eng. doi:10.1007/s00603-015-0727-9

    Google Scholar 

  • Detournay E, Cheng A (1988) Poroelastic response of a borehole in a non-hydrostatic stress field. Int J Rock Mech Min Sci 25(3):171–182

    Article  Google Scholar 

  • Ellsworth WL (2013) Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake. Science 341:142. doi:10.1785/gssrl.83.2.250

    Article  Google Scholar 

  • Elsworth D, Spiers C, Niemeijer A (2016) Understanding induced seismicity. Science 354(6318):1380–1381. doi:10.1126/science.aal2584

    Article  Google Scholar 

  • Energy Information Administration (2015) Drilling productivity report for key tight oil and shale gas regions. U.S. Energy Information Administration. November 2015. http://www.eia.gov/petroleum/drilling/pdf/dpr-full.pdf. Accessed 12 Nov 2016

  • Fang Z, Harrison J (2002) Development of a local degradation approach to the modelling of brittle fracture in heterogeneous rocks. Int J Rock Mech Min Sci 39:443–457

    Article  Google Scholar 

  • Friehauf K (2009) Simulation and design of energized hydraulic fractures. Dissertation, The University of Texas at Austin

  • Gallegos T, Varela B, Haines S, Engle M (2015) Hydraulic fracturing water use variability in the United States and potential environmental implications. Water Resour Res 51(7):5839–5845. doi:10.1002/2015WR017278

    Article  Google Scholar 

  • Gan Q, Elsworth D, Alpern J, Marone C, Connolly P (2015) Breakdown pressures due to infiltration and exclusion in finite length boreholes. J Petrol Sci Eng 127:329–337

    Article  Google Scholar 

  • Gensterblum Y, Ghanizadeh A, Cuss R, Amann-Hildenbrand A, Krooss B, Clarkson C, Harrington J, Zoback M (2015) Gas transport and storage capacity in shale gas reservoirs—a review. Part A: transport processes. J Unconv Oil Gas Resour 12:87–122. doi:10.1016/j.juogr.2015.08.001

    Article  Google Scholar 

  • Gupta D (2009) Unconventional fracturing fluids for tight gas reservoirs. In: Proceedings of SPE hydraulic fracturing technology conference, document ID SPE-119424-MS, The Woodlands, Texas, USA

  • Haimson B, Fairhurst C (1967) Initiation and extension of hydraulic fractures in rocks. Soc Petrol Eng J 7:310–318

    Article  Google Scholar 

  • Hubbert M, Willis D (1957) Mechanics of hydraulic fracturing. Trans Soc Petrol Eng AIME 210:153–168

    Google Scholar 

  • Hudson J, Fairhurst C (1969) Tensile strength, Weibull’s theory and a general statistical approach to rock failure. In: Proceedings of civil engineering materials conference, Southampton, pp 901–904

  • Ishida T, Chen Q, Mizuta Y, Roegiers J (2004) Influence of fluid viscosity on the hydraulic fracturing mechanism. J Energy Resour Technol 126:190–200

    Article  Google Scholar 

  • Ishida T, Aoyagi K, Niwa T, Chen Y, Mruata S, Chen Q, Nakayama Y (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophys Res Lett 39:L16309. doi:10.1029/2012GL052788

    Article  Google Scholar 

  • Ishida T, Chen Y, Bennour Z, Yamashita H, Inui S, Nagaya Y, Naoi M, Chen Q, Nakayama Y, Nagano Y (2016) Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments. J Geophys Res Solid Earth 121(11):8080–8098. doi:10.1002/2016JB013365

    Article  Google Scholar 

  • Jarvie D, Pollastro R, Hill R, Bowker K, Claxton B, Burgess J (2004) Evaluation of hydrocarbon generation and storage in the Barnett shale, Ft. Worth basin, Texas. Paper presented at the 2004 Ellison Miles Memorial Symposium, Farmers Branch, Texas, USA

  • Kim K, Yao C (1995) Effects of micromechanical property variation on fracture processes in simple tension. In: Proceedings of the 35th US rock mechanics/geomechanics symposium, document ID ARMA-95-0471, Reno, Nevada, USA

  • Kirsch EG (1898) Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereines deutscher Ingenieure 42:797–807

    Google Scholar 

  • Li X, Feng Z, Han G, Elsworth D, Marone C, Saffer D (2015) Hydraulic fracturing in shale with H2O, CO2 and N2. In: Proceedings of the 49th US rock mechanics/geomechanics symposium, document ID ARMA-2015-786, San Francisco, California, USA

  • Lu Y, Elsworth D, Wang L (2013) Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks. Comput Geotech 49:226–244. doi:10.1016/j.compgeo.2012.11.009

    Article  Google Scholar 

  • Mahadevan J, Sharma M, Yortsos Y (2007) Capillary wicking in gas wells. SPE J 12:429–437

    Article  Google Scholar 

  • Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech 115(2):345–365

    Article  Google Scholar 

  • Middleton R, Carey J, Currier R, Hyman J, Kang Q, Karra S, Jiménez-Martínez J, Porter M, Viswanathan H (2015) Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2. Appl Energy 147:500–509. doi:10.1016/j.apenergy.2015.03.023

    Article  Google Scholar 

  • Parekh B, Sharma M (2004) Cleanup of water blocks in depleted low-permeability reservoirs. In: Proceedings of SPE annual technical conference and exhibition, document ID SPE-89837-MS, Houston, Texas, USA

  • Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressure up to 800 MPa. J Phys Chem Ref Data 25:1509–1596

    Article  Google Scholar 

  • Tang C (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34:249–261

    Article  Google Scholar 

  • Tang C, Kaiser P (1998) Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—part I: fundamentals. Int J Rock Mech Min Sci 35(2):113–121

    Article  Google Scholar 

  • Vengosh A, Jackson R, Warner N, Darrah T, Kondash A (2014) A critical review of the risks to water resources from shale gas development and hydraulic fracturing in the United States. Environ Sci Technol 16(4):6838. doi:10.1021/es405118y

    Google Scholar 

  • Vidic R, Brantley S, Vandenbossche J, Yoxtheimer D, Abad J (2013) Impact of shale gas development on regional water quality. Science 340(6134):1235009. doi:10.1126/science.1235009

    Article  Google Scholar 

  • Wang L, Yao B, Cha M, Alqahtani N, Patterson T, Kneafsey T, Miskimins J, Yin X, Wu Y (2016) Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen. J Nat Gas Sci Eng 35:160–174. doi:10.1016/j.jngse.2016.08.052

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18(3):293–297

    Google Scholar 

  • Wong T, Wong R, Chau K, Tang C (2006) Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech Mater 38(7):664–681

    Article  Google Scholar 

  • Zhu W, Tang C (2004) Micromechanical model for simulating the fracture process of rock. Rock Mech Rock Eng 37:25–56

    Article  Google Scholar 

  • Zhu W, Tang C (2006) Numerical simulation of brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min Sci 43(2):236–252

    Article  Google Scholar 

  • Zhu W, Liu J, Tang C, Zhao X, Brady B (2005) Simulation of progressive fracturing processes around underground excavations under biaxial compression. Tunn Undergr Sp Tech 20(3):231–247

    Article  Google Scholar 

  • Zhu W, Wei C, Li S, Wei J, Zhang M (2013) Numerical modeling on destress blasting in coal seam for enhancing gas drainage. Int J Rock Mech Min Sci 59:179–190

    Google Scholar 

Download references

Acknowledgements

The present work was funded by Chevron ETC, the National Science Foundation of China (Grant Nos. 51104147 and 51674247) and the Fundamental Research Funds for the Central Universities (2015XKZD06). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Elsworth, D., Wu, Y. et al. The Influence of Fracturing Fluids on Fracturing Processes: A Comparison Between Water, Oil and SC-CO2 . Rock Mech Rock Eng 51, 299–313 (2018). https://doi.org/10.1007/s00603-017-1326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1326-8

Keywords

Navigation