Skip to main content
Log in

Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and SN curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate SN curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Åkesson U, Hansson J, Stigh J (2004) Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Eng Geol 72(1–2):131–142. doi:10.1016/j.enggeo.2003.07.001

    Article  Google Scholar 

  • Alarcon-Guzman A, Leonards G, Chameau J (1989) Undrained monotonic and cyclic strength of sand. J Geotech Eng ASCE 114(10):1089–1109

    Article  Google Scholar 

  • Anderson O, Grew P (1977) Stress corrosion theory of crack propagation with applications to geophysics. Rev Geophys 15(1):77–104

    Article  Google Scholar 

  • Antonaci P, Bocca P, Masera D (2012) Fatigue crack propagation monitoring by acoustic emission signal analysis. Eng Fract Mech 81:26–32. doi:10.1016/j.engfracmech.2011.09.017

    Article  Google Scholar 

  • Atkinson B (1984) Subcritical crack growth in geological materials. J Geophys Res 89(B6):4077. doi:10.1029/JB089iB06p04077

    Article  Google Scholar 

  • Attewell P, Farmer W (1973) Fatigue behaviour of rock. Int J Rock Mech Min Sci 10:1–9

    Article  Google Scholar 

  • Attewell P, Sandford M (1974) Intrinsic shear strength of a brittle, anisotropic rock: experimental and mechanical interpretation. Int J Rock Mech Min Sci Geomech Abstr 11(11):423–430

    Article  Google Scholar 

  • Bagde M, Petroš V (2005) Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading. Int J Rock Mech Min Sci 42(2):237–250. doi:10.1016/j.ijrmms.2004.08.008

    Article  Google Scholar 

  • Bagde MN, Petroš V (2005) Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading. Rock Mech Rock Eng 38(3):169–196. doi:10.1007/s00603-005-0045-8

    Article  Google Scholar 

  • Bastian T, Connelly B, Lazo Olivares C, Yfantidis N, Taheri A (2014) Progressive damage of hawkesbury sandstone subjected to systematic cyclic loading. Min Educ Aust J Res Proj Rev 3:7–14

    Google Scholar 

  • Baud P, Zhu W, Wong T-F (2000) In the brittle faulting regime, damage mechanics models predict that the uniaxial compressive strength scales with presence of water the confined brittle strength the pore will be denoted by Pt. J Geophys Res 105:371–389

    Google Scholar 

  • Bertuzzi R, Douglas K, Mostyn G (2016) Comparison of intact rock strength criteria for pragmatic design. Int J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0001644

    Google Scholar 

  • Bieniawski Z (1967) Mechanism of brittle fracture of rock: part II experimental studies. Int J Rock Mech Min Sci 4:407–423

    Article  Google Scholar 

  • Brantut N, Heap M, Baud P, Meredith P (2014) Rate- and strain-dependent brittle deformation of rocks. J Geophys Res Solid Earth. doi:10.1002/2013JB010448.Received

    Google Scholar 

  • Brantut N, Heap M, Meredith P, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43. doi:10.1016/j.jsg.2013.03.007

    Article  Google Scholar 

  • Brown E, Hudson J (1974) Fatigue failure characteristics of some models of jointed rocks. Earthq Eng Struct Dyn 2:379–386

    Article  Google Scholar 

  • Bubeck A, Walker R, Healy D, Dobbs M, Holwell D (2017) Pore geometry as a control on rock strength. Earth Planet Sci Lett 457:38–48. doi:10.1016/j.epsl.2016.09.050

    Article  Google Scholar 

  • Burdine N (1963) Rock failure under dynamic loading conditions. Soc Petrol Eng J 3(01):1–8

    Article  Google Scholar 

  • Cardani G, Meda A (2004) Marble behaviour under monotonic and cyclic loading in tension. Constr Build Mater 18(6):419–424. doi:10.1016/j.conbuildmat.2004.03.012

    Article  Google Scholar 

  • Cattaneo S, Labuz J (2001) Damage of marble from cyclic loading. J Mater Civ Eng 13(December):459–465

    Article  Google Scholar 

  • Celestino T, Bortolucci A, Nobrega C (1995) Determination of rock fracture toughness under creep and fatigue. In: Proceedings of the 35th US symposium on rock mechanics. Reno, New York, pp 147–152

  • Cho S, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min Sci 40(5):763–777

    Article  Google Scholar 

  • Chow TM, Meglis IL, Young RP (1995) Progressive microcrack development in tests on Lac du Bonnet granite—II. Ultrasonic tomographic imaging. Int J Rock Mech Min Sci 32(8):751–761. doi:10.1016/0148-9062(95)00015-9

    Article  Google Scholar 

  • Ciantia M, Castellanza R, di Prisco C (2014) Experimental study on the water-induced weakening of calcarenites. Rock Mech Rock Eng 48(2):441–461. doi:10.1007/s00603-014-0603-z

    Article  Google Scholar 

  • Cosenza P, Ghoreychi M, Bazargan-Sabet B, de Marsily G (1999) In situ rock salt permeability measurement for long term safety assessment of storage. Int J Rock Mech Min Sci 36:509–526. doi:10.1016/S0148-9062(99)00017-0

    Google Scholar 

  • Costin LS, Holcomb DJ (1981) Time-dependent failure of rock under cyclic loading. Tectonophysics 79(3–4):279–296. doi:10.1016/0040-1951(81)90117-7

    Article  Google Scholar 

  • Cruden D (1974) The static fatigue of brittle rock under uniaxial compression. Int J Rock Mech Min Sci Geomech Abstr 11(2):67–73

    Article  Google Scholar 

  • David E, Brantut N, Schubnel A, Zimmerman R (2012) Sliding crack model for nonlinearity and hysteresis in the uniaxial stress strain curve of rock. Int J Rock Mech Min Sci 52:9–17. doi:10.1016/j.ijrmms.2012.02.001

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B (1999) Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int J Rock Mech Min Sci 36(3):361–380

    Article  Google Scholar 

  • Erarslan N (2016) Microstructural investigation of subcritical crack propagation and fracture process zone (FPZ) by the reduction of rock fracture toughness under cyclic loading. Eng Geol 208:181–190. doi:10.1016/j.enggeo.2016.04.035

    Article  Google Scholar 

  • Erarslan N, Alehossein H, Williams DJ (2014) Tensile fracture strength of Brisbane tuff by static and cyclic loading tests. Rock Mech Rock Eng 47(4):1135–1151. doi:10.1007/s00603-013-0469-5

    Article  Google Scholar 

  • Erarslan N, Williams D (2012a) Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mech Rock Eng 45(3):327–340. doi:10.1007/s00603-011-0209-7

    Article  Google Scholar 

  • Erarslan N, Williams D (2012) Mechanism of rock fatigue damage in terms of fracturing modes. Int J Fatigue 43:76–89. doi:10.1016/j.ijfatigue.2012.02.008

    Article  Google Scholar 

  • Evans A, Fuller R (1974) Crack propagation in ceramic materials under cyclic loading conditions. Metall Trans 5:27–33

    Google Scholar 

  • Fan J, Chen J, Jiang D, Chemenda A, Chen J, Ambre J (2017) Discontinuous cyclic loading tests of salt with acoustic emission monitoring. Int J Fatigue 94:140–144. doi:10.1016/j.ijfatigue.2016.09.016

    Article  Google Scholar 

  • Fan J, Chen J, Jiang D, Ren S, Wu J (2016) Fatigue properties of rock salt subjected to interval cyclic pressure. Int J Fatigue 90:109–115. doi:10.1016/j.ijfatigue.2016.04.021

    Article  Google Scholar 

  • Faoro I, Vinciguerra S, Marone C, Elsworth D, Schubnel A (2013) Linking permeability to crack density evolution in thermally stressed rocks under cyclic loading. Geophys Res Lett 40(February):2590–2595. doi:10.1002/grl.50436

    Article  Google Scholar 

  • Fredrich J, Evans B, Wong T (1989) Micromechanics of the brittle to plastic transition in Carrara marble. J Geophys Res 94:4129–4145. doi:10.1029/JB094iB04p04129

    Article  Google Scholar 

  • Fuenkajorn K, Phueakphum D (2010) Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Eng Geol 112(1–4):43–52. doi:10.1016/j.enggeo.2010.01.002

    Article  Google Scholar 

  • Gatelier N, Pellet F, Loret B (2002) Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int J Rock Mech Min Sci 39(3):335–354. doi:10.1016/S1365-1609(02)00029-1

    Article  Google Scholar 

  • Ghamgosar M, Erarslan N (2016) Experimental and numerical studies on development of fracture process zone (FPZ) in rocks under cyclic and static loadings. Rock Mech Rock Eng 49(3):893–908. doi:10.1007/s00603-015-0793-z

    Article  Google Scholar 

  • Ghamgosar M, Erarslan N, Williams D (2017) Experimental Investigation of fracture process zone in rocks damaged under cyclic loadings. Exp Mech 57:97–113. doi:10.1007/s11340-016-0216-4

    Article  Google Scholar 

  • Gong M, Smith I (2003) Effect of waveform and loading sequence on low-cycle compressive fatigue life of spruce. J Mater Civ Eng 15(February):93–99

    Article  Google Scholar 

  • Griffiths L, Heap M, Xu T, Chen C-F, Baud P (2017) The influence of pore geometry and orientation on the strength and stiffness of porous rock. J Struct Geol 96:149–160. doi:10.1016/j.jsg.2017.02.006

    Article  Google Scholar 

  • Grover H, Dehlinger P, McClure G (1950) Investigation of fatigue characteristics of rocks. Technical report, Drilling Research Inc

  • Guo Y, Yang C, Mao H (2012) Mechanical properties of Jintan mine rock salt under complex stress paths. Int J Rock Mech Min Sci 56:54–61. doi:10.1016/j.ijrmms.2012.07.025

    Google Scholar 

  • Haimson BC, Kim CM (1971) Mechanical behaviour of rock under cyclic fatigue. In: Cording EJ (ed) Stability of rock slopes. Proceedings of the 13th symposium on rock mechanics. ASCE, New York, pp 845–863

  • Hale P, Shakoor A (2003) A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environ Eng Geosci 9(2):117–130. doi:10.2113/9.2.117

    Article  Google Scholar 

  • Hashash Y, Hook J, Schmidt B, I-Chiang Yao J (2001) Seismic design and analysis of underground structures. Tunn Undergr Space Technol 16(4):247–293. doi:10.1016/S0886-7798(01)00051-7

    Article  Google Scholar 

  • Hawkins A, Mcconnell B (1992) Sensitivity of sandstone strength and deformability to changes in moisture content: sandstones studied. Q J Eng Geol 25:115–130. doi:10.1144/GSL.QJEG.1992.025.02.05

    Article  Google Scholar 

  • Heap M, Faulkner D (2008) Quantifying the evolution of static elastic properties as crystalline rock approaches failure. Int J Rock Mech Min Sci 45:564–573. doi:10.1016/j.ijrmms.2007.07.018

    Article  Google Scholar 

  • Heap M, Faulkner D, Meredith P, Vinciguerra S (2010) Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation. Geophys J Int 183(1):225–236. doi:10.1111/j.1365-246X.2010.04726.x

    Article  Google Scholar 

  • Heap MJ, Vinciguerra S, Meredith PG (2009) The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano. Tectonophysics 471(1–2):153–160. doi:10.1016/j.tecto.2008.10.004

    Article  Google Scholar 

  • Heimisson E, Einarsson P, Sigmundsson F, Brandsdóttir B (2015) Kilometer-scale Kaiser effect identified in Krafla volcano, Iceland. Geophys Res Lett 42:7958–7965. doi:10.1002/2015GL065680.Received

    Article  Google Scholar 

  • Hoek E, Brown E (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186. doi:10.1016/S1365-1609(97)80069-X

    Article  Google Scholar 

  • Holcomb D (1993) General theory of the Kaiser effect. Int J Rock Mech Min Sci Geomech Abstr 30(7):929–935

    Article  Google Scholar 

  • Hudson J, Harrison J (1997) Engineering rock mechanics—an introduction to the principles, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Jamali Zavareh S, Baghbanan A, Hashemolhosseini H, Haghgouei H (2017) Effect of micro-structure on fatigue behaviour of intact rocks under completely reversed load. Anal Numer Methods Min Eng 6:55–62

    Google Scholar 

  • Jamshidi A, Nikudel M, Khamehchiyan M (2013) Predicting the long-term durability of building stones against freeze-thaw using a decay function model. Cold Reg Sci Technol 92:29–36. doi:10.1016/j.coldregions.2013.03.007

    Article  Google Scholar 

  • Jiang D, Fan J, Chen J, Li L, Cui Y (2016) A mechanism of fatigue in salt under discontinuous cycle loading. Int J Rock Mech Min Sci 86:255–260. doi:10.1016/j.ijrmms.2016.05.004

    Google Scholar 

  • Jiang X, Shu-chun L, Yun-qi T, Xiao-jun T, Xin W (2009) Acoustic emission characteristic during rock fatigue damage and failure. Proc Earth Planet Sci 1(1):556–559. doi:10.1016/j.proeps.2009.09.088

    Article  Google Scholar 

  • Jobli A, Noor M, Tawie R, Hampden A, Julai N (2017) Uniaxial compressive strength of Malaysian weathered granite due to cyclic loading. J Eng Appl Sci 12(14):4298–4301

    Google Scholar 

  • Kaiser J (1950) An investigation into the occurrence of noises in tensile tests, or a study of acoustic phenomena in tensile tests. Ph.D. thesis, Technische Hochschule Munich

  • Karakus M, Akdag S, Bruning T (2016) Rock fatigue damage assessment by acoustic emission. In: International conference on geomechanics, geo-energy and geo-resources, September, Melbourne, Australia

  • Kendrick J, Smith R, Sammonds P, Meredith P, Dainty M, Pallister J (2013) The influence of thermal and cyclic stressing on the strength of rocks from Mount St. Helens, Washington. Bull Volcanol. doi:10.1007/s00445-013-0728-z

  • Ko T (2005) Crack coalescence in rock-like material under cyclic loading. Ph.D. thesis, Massachusetts Institute of Technology

  • Kranz R, Harris W, Carter N (1982) Static fatigue of granite at 200. Geophys Res Lett 9(1):1–4. doi:10.1029/GL009i001p00001

    Article  Google Scholar 

  • Kranz RL (1983) Microcracks in rocks: a review. Tectonophysics 100(1–3):449–480. doi:10.1016/0040-1951(83)90198-1

    Article  Google Scholar 

  • Kumar A (1968) The effect of stress rate and temperature on the strength of basalt and granite. Geophysics 33(3):501–510

    Article  Google Scholar 

  • Lavrov A (2001) Kaiser effect observation in brittle rock cyclically loaded with different loading rates. Mech Mater 33(11):669–677. doi:10.1016/S0167-6636(01)00081-3

    Article  Google Scholar 

  • Lavrov A (2003) The Kaiser effect in rocks: principles and stress estimation techniques. Int J Rock Mech Min Sci 40:151–171. doi:10.1016/S1365-1609(02)00138-7

    Article  Google Scholar 

  • Lavrov A, Vervoort A, Wevers M, Napier JAL (2002) Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation. Int J Rock Mech Min Sci 39(3):287–302. doi:10.1016/S1365-1609(02)00038-2

    Article  Google Scholar 

  • Le J, Manning J, Labuz J (2014) Scaling of fatigue crack growth in rock. Int J Rock Mech Min Sci 72:71–79. doi:10.1016/j.ijrmms.2014.08.015

    Google Scholar 

  • Lee MK, Barr BG (2004) An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cement Concr Compos 26(4):299–305. doi:10.1016/S0958-9465(02)00139-7

    Article  Google Scholar 

  • Li C, Nordlund E (1993) Experimental verification of the Kaiser effect in rocks. Rock Mech Rock Eng 26(4):333–351. doi:10.1007/BF01027116

    Article  Google Scholar 

  • Li G, Moelle K, Lewis J (1992) Fatigue crack growth in brittle sandstones. Int J Rock Mech Min Sci 29(5):469–477

    Article  Google Scholar 

  • Li N, Zhang P, Chen Y, Swoboda G (2003) Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading. Int J Rock Mech Min Sci 40(1):145–150. doi:10.1016/S1365-1609(02)00111-9

    Article  Google Scholar 

  • Liu E, He S (2012) Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Eng Geol 125:81–91. doi:10.1016/j.enggeo.2011.11.007

    Article  Google Scholar 

  • Liu J, Xie H, Hou Z, Yang C, Chen L (2014) Damage evolution of rock salt under cyclic loading in unixial tests. Acta Geotech 9(1):153–160. doi:10.1007/s11440-013-0236-5

    Article  Google Scholar 

  • Liu Q, Huang S, Kang Y, Liu X (2015) Cold regions science and technology a prediction model for uniaxial compressive strength of deteriorated rocks due to freeze thaw. Cold Reg Sci Technol 120:96–107. doi:10.1016/j.coldregions.2015.09.013

    Article  Google Scholar 

  • Liu Y, Dai F, Fan P, Xu N, Dong L (2017a) Experimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression. Rock Mech Rock Eng 50(6):1453–1471. doi:10.1007/s00603-017-1190-6

    Article  Google Scholar 

  • Liu Y, Dai F, Xu N, Zhao T (2017b) Cyclic flattened Brazilian disc tests for measuring the tensile fatigue properties of brittle rocks cyclic flattened Brazilian disc tests for measuring the tensile fatigue properties of brittle rocks. Rev Sci Instrum. doi:10.1063/1.4995656

    Google Scholar 

  • Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr 30(7):883–899

    Article  Google Scholar 

  • Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidorin A (1992) Chapter 1 observations of quasistatic fault growth from acoustic emissions. Int Geophys 51:3–31. doi:10.1016/S0074-6142(08)62813-2

  • Ma L, Liu X, Wang M, Xu H, Hua R, Fan P, Jiang S, Wang G, Yi Q (2013) Experimental investigation of the mechanical properties of rock salt under triaxial cyclic loading. Int J Rock Mech Min Sci 62:34–41. doi:10.1016/j.ijrmms.2013.04.003

    Google Scholar 

  • Martin C, Chandler N (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci 31(6):643–659

    Article  Google Scholar 

  • Martin C, Maybee W (2000) The strength of hard-rock pillars. Int J Rock Mech Min Sci 37(8):1239–1246

    Article  Google Scholar 

  • Martinez-Martinez J, Benavente D, Gomez-Heras M, Marco-Castano L, Garcia-Del-Cura M (2013) Non-linear decay of building stones during freeze-thaw weathering processes. Constr Build Mater 38:443–454. doi:10.1016/j.conbuildmat.2012.07.059

    Article  Google Scholar 

  • Meglis IL, Chow TM, Young RP (1995) Progressive microcrack development in tests on Lac du Bonnet granite—I. Acoustic emission source location and velocity measurement. Int J Rock Mech Min Sci 32(8):741–750. doi:10.1016/0148-9062(95)00015-9

    Article  Google Scholar 

  • Meng Q, Zhang M, Han L, Pu H, Nie T (2016) Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression. Rock Mech Rock Eng 49(10):3873–3886. doi:10.1007/s00603-016-1077-y

    Article  Google Scholar 

  • Michalske T, Freiman S (1982) A molecular interpretation of stress corrosion in silica. Nature 295:511–512

    Article  Google Scholar 

  • Michalske T, Freiman S (1983) A molecular mechanism for stress corrosion in vitreous silica. J Am Ceram Soc 66(4):284–288

    Article  Google Scholar 

  • Miner M (1945) Cumulative damage in fatigue. J Appl Mech 12(3):159–164

    Google Scholar 

  • Mitchell T, Faulkner D (2008) Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones. J Geophys Res Solid Earth 113(11):1–16. doi:10.1029/2008JB005588

    Google Scholar 

  • Momeni A, Karakus M, Khanlari GR, Heidari M (2015) Effects of cyclic loading on the mechanical properties of a granite. Int J Rock Mech Min Sci 77:89–96. doi:10.1016/j.ijrmms.2015.03.029

    Google Scholar 

  • Morales Demarco M, Jahns E, Rüdrich J, Oyhantcabal P, Siegesmund S (2007) The impact of partial water saturation on rock strength: an experimental study on sandstone. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 158(4):869–882. doi:10.1127/1860-1804/2007/0158-0869

    Article  Google Scholar 

  • Munoz H, Taheri A (2017) Local damage and progressive localisation in porous sandstone during cyclic loading. Rock Mech Rock Eng. doi:10.1007/s00603-017-1298-8

    Google Scholar 

  • Nara Y, Kaneko K (2006) Sub-critical crack growth in anisotropic rock. Int J Rock Mech Min Sci 43(3):437–453. doi:10.1016/j.ijrmms.2005.07.008

    Article  Google Scholar 

  • Nara Y, Morimoto K, Hiroyoshi N, Yoneda T, Kaneko K, Benson P (2012) Influence of relative humidity on fracture toughness of rock: implications for subcritical crack growth. Int J Solids Struct 49(18):2471–2481. doi:10.1016/j.ijsolstr.2012.05.009

    Article  Google Scholar 

  • Nejati H, Ghazvinian A (2014) Brittleness effect on rock fatigue damage evolution. Rock Mech Rock Eng 47(5):1839–1848. doi:10.1007/s00603-013-0486-4

    Article  Google Scholar 

  • Ni XH (2014) Failure characteristic of granite under cyclic loading with different frequencies. Appl Mech Mater 638:1967–1970

    Article  Google Scholar 

  • Pola A, Crosta G, Fusi N, Castellanza R (2014) General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration. Eng Geol 169:1–13. doi:10.1016/j.enggeo.2013.11.011

    Article  Google Scholar 

  • Pouya A, Zhu C, Arson C (2016) Micro-macro approach of salt viscous fatigue under cyclic loading. Mech Mater 93:13–31. doi:10.1016/j.mechmat.2015.10.009

    Article  Google Scholar 

  • Prikryl R, Lokajicek T, Li C, Rudajev V (2003) Acoustic emission characteristics and failure of uniaxially stressed granitic rocks: the effect of rock fabric. Rock Mech Rock Eng 36:255–270. doi:10.1007/s00603-003-0051-7

    Article  Google Scholar 

  • Pujades E, Willems T, Bodeux S, Orban P, Dassargues A (2016) Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow. Hydrogeol J. doi:10.1007/s10040-016-1413-z

    Google Scholar 

  • Rajaram V (1981) Mechanical behavior of granite under cyclic compression. In: First international conference on recent advances in geotechnical earthquake engineering

  • Rao M, Ramana YV (1992) A study of progressive failure of rock under cyclic loading by ultrasonic and AE monitoring techniques. Rock Mech Rock Eng 25(4):237–251. doi:10.1007/BF01041806

    Article  Google Scholar 

  • Ritchie R (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fract 100:55–83. doi:10.1023/A:1018655917051

    Article  Google Scholar 

  • Royer-Carfagni G, Salvatore W (2000) The characterization of marble by cyclic compression loading: experimental results. Mech Cohes Frict Mater 5(7):535–563. doi:10.1002/1099-1484(200010)5:7<535::AID-CFM102>3.0.CO;2-D

    Article  Google Scholar 

  • Schaefer L, Kendrick J, Oommen T, Lavallée Y, Chigna G, Costa A (2015) Geomechanical rock properties of a basaltic volcano. Front Earth Sci 3(June):1–15

    Google Scholar 

  • Schijve J (2003) Fatigue of structures and materials. Fatigue Struct Mater 25:679–702. doi:10.1007/978-1-4020-6808-9

    Google Scholar 

  • Scholz C, Kranz R (1974) Notes on dilatancy recovery. J Geophys Res 79(14):2132–2135

    Article  Google Scholar 

  • Scholz CH, Koczynski TA (1979) Dilatancy anisotropy and the response of rock to large cyclic loads. J Geophys Res 84(B10):5525. doi:10.1029/JB084iB10p05525

    Article  Google Scholar 

  • Shao J, Zhou H, Chau KT (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Methods Geomech 29(12):1231–1247. doi:10.1002/nag.457

    Article  Google Scholar 

  • Shreiner LA, Pavlova NN (1958) Experimental data on the fatigue breakdown of rocks. Trudy Instituta Nefti Akademii Nauk SSSR, vol 2, Neftepromyslovoe Delo. Associated Technical Services, East Orange, NJ, pp 46–52

  • Singh S (1989) Fatigue and strain hardening behaviour of graywacke from the flagstaff formation, New South Wales. Eng Geol 26(2):171–179

    Article  Google Scholar 

  • Sondergeld C, Estey L (1981) Acoustic emission study of microfracturing during the cyclic loading of Westerly granite. J Geophys Res 86(B4):2915–2924. doi:10.1029/JB086iB04p02915

    Article  Google Scholar 

  • Song H, Zhang H, Fu D, Zhang Q (2016) Experimental analysis and characterization of damage evolution in rock under cyclic loading. Int J Rock Mech Min Sci 88:157–164. doi:10.1016/j.ijrmms.2016.07.015

    Google Scholar 

  • Song R, Yue-ming B, Jing-Peng Z, De-yi J, Chun-he Y (2013) Experimental investigation of the fatigue properties of salt rock. Int J Rock Mech Min Sci 64:68–72. doi:10.1016/j.ijrmms.2013.08.023

    Google Scholar 

  • Sorgi C, De Gennaro V (2011) Water-rock interaction mechanisms and ageing processes in chalk. In: Chen D (ed) Advances in data, methods, models and their applications in geoscience. In Tech. doi:10.5772/1133

  • Steffen B (2012) Prospects for pumped-hydro storage in Germany. Energy Policy 45:420–429

    Article  Google Scholar 

  • Taheri A, Royle A, Yang Z, Zhao Y (2016) Study on variations of peak strength of a sandstone during cyclic loading. Geomech Geophys Geo-Energy Geo-Resour 2(1):1–10. doi:10.1007/s40948-015-0017-8

    Article  Google Scholar 

  • Tien Y, Lee D, Juang C (1990) Strain, pore pressure and fatigue characteristics of sandstone under various load conditions. Int J Rock Mech Min Sci Geomech Abstr 27(4):283–289

    Article  Google Scholar 

  • Tomkins B (1981) Subcritical crack growth: fatigue, creep and stress corrosion cracking. Philos Trans R Soc A Math Phys Eng Sci 299:31–44

    Article  Google Scholar 

  • Trippetta F, Collettini C, Meredith P, Vinciguerra S (2013) Tectonophysics evolution of the elastic moduli of seismogenic triassic evaporites subjected to cyclic stressing. Tectonophysics 592:67–79. doi:10.1016/j.tecto.2013.02.011

    Article  Google Scholar 

  • Voznesenskii A, Krasilov M, Kutkin Y, Tavostin M, Osipov Y (2017) Features of interrelations between acoustic quality factor and strength of rock salt during fatigue cyclic loadings. Int J Fatigue 97:70–78. doi:10.1016/j.ijfatigue.2016.12.027

    Article  Google Scholar 

  • Voznesenskii A, Kutkin Y, Krasilov M, Komissarov A (2015) Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor. Int J Fatigue 77(March):194–198. doi:10.1016/j.ijfatigue.2015.02.012

    Article  Google Scholar 

  • Voznesenskii A, Kutkin Y, Krasilov M, Komissarov A (2016) The influence of the stress state type and scale factor on the relationship between the acoustic quality factor and the residual strength of gypsum rocks in fatigue tests. Int J Fatigue 84:53–58. doi:10.1016/j.ijfatigue.2015.11.016

    Article  Google Scholar 

  • Wang H, Xu W, Cai M, Xiang Z, Kong Q (2017) Gas permeability and porosity evolution of a porous sandstone under repeated loading and unloading conditions. Rock Mech Rock Eng 50:2071–2083. doi:10.1007/s00603-017-1215-1

    Article  Google Scholar 

  • Wang W, Wang M, Liu X (2016) Study on mechanical features of Brazilian splitting fatigue tests of salt rock. Adv Civ Eng 2016:5436240. doi:10.1155/2016/5436240

    Google Scholar 

  • Wang Z, Li S, Qiao L, Zhang Q (2015) Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation. Int J Rock Mech Min Sci 73:70–81. doi:10.1016/j.ijrmms.2014.09.018

    Article  Google Scholar 

  • Wang Z, Li S, Qiao L, Zhao J (2013) Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. Rock Mech Rock Eng 46(6):1603–1615. doi:10.1007/s00603-013-0387-6

    Article  Google Scholar 

  • Widhalm C, Tschegg E, Eppensteiner W (1996) Anisotropic thermal expansion causes deformation of marble claddings. J Perform Constr Facil 10(February):5–10

    Article  Google Scholar 

  • Wiederhorn S (1967) Influence of water vapor on crack propagation in soda-lime glass. J Am Ceram Soc 50(8):407–414

    Article  Google Scholar 

  • Xiao J, Ding D, Jiang F, Xu G (2010a) Fatigue damage variable and evolution of rock subjected to cyclic loading. Int J Rock Mech Min Sci 47(3):461–468. doi:10.1016/j.ijrmms.2009.11.003

    Article  Google Scholar 

  • Xiao J, Ding D, Xu G, Jiang F (2009) Inverted S-shaped model for nonlinear fatigue damage of rock. Int J Rock Mech Min Sci 46(3):643–648. doi:10.1016/j.ijrmms.2008.11.002

    Article  Google Scholar 

  • Xiao J, Feng X, Ding D, Jiang F (2010b) Investigation and modeling on fatigue damage evolution of rock as a function of logarithmic cycle. Int J Numer Anal Meth Geomech 35:1127–1140. doi:10.1002/nag

    Article  Google Scholar 

  • Yamashita S, Sugimoto F, Imai T, Namsrai D, Yamauchi M, Kamoshida N (1999) The relationship between the failure process of the creep or fatigue test and of the conventional compression test on rock. In: 9th ISRM congress, international society for rock mechanics

  • Yang S, Tian W, Ranjith P (2017) Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading. Rock Mech Rock Eng. doi:10.1007/s00603-017-1262-7

    Google Scholar 

  • Yang S-Q, Ranjith P, Huang Y-H, Yin P-F, Jing H-W, Gui Y-L, Yu Q-L (2015) Sandstone under triaxial cyclic loading. Geophys J Int 201:662–682. doi:10.1093/gji/ggv023

    Article  Google Scholar 

  • Zang A, Yoon J, Stephansson O, Heidbach O (2013) Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity. Geophys J Int 195(August):1282–1287. doi:10.1093/gji/ggt301

    Article  Google Scholar 

  • Zhang P, Xu J, Li N (2008) Fatigue properties analysis of cracked rock based on fracture evolution process. J Cent South Univ 15:95–99. doi:10.1007/s1177100800196

    Article  Google Scholar 

  • Zhang S, Lai Y, Zhang X, Pu Y, Yu W (2004) Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze-thaw cycle condition. Tunn Undergr Space Technol 19(3):295–302. doi:10.1016/j.tust.2003.11.011

    Article  Google Scholar 

  • Zhang ZX, Kou SQ, Jiang LG, Lindqvist P-A (2000) Effects of loading rate on rock fracture characteristics and energy partitioning. Int J Rock Mech Min Sci 37:745–762

    Article  Google Scholar 

  • Zhao J (2000) Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int J Rock Mech Min Sci 37(7):1115–1121. doi:10.1016/S1365-1609(00)00049-6

    Article  Google Scholar 

  • Zhenyu T, Haihong M (1990) An experimental study and analysis of the behaviour of rock under cyclic loading. Int J Rock Mech Min Sci Geomech Abstr 27(1):51–56

    Article  Google Scholar 

  • Zhu Q, Kondo D, Shao J, Pensee V (2008) Micromechanical modelling of anisotropic damage in brittle rocks and application. Int J Rock Mech Min Sci 45(4):467–477. doi:10.1016/j.ijrmms.2007.07.014

    Article  Google Scholar 

  • Zhu W, Tang C (2006) Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min Sci 43(2):236–252. doi:10.1016/j.ijrmms.2005.06.008

    Article  Google Scholar 

  • Zoback M, Byerlee J (1975) The effect of cyclic differential stress on dilatancy in westerly reduced repeated plied the is sub- on dilatancy in westerly granite. J Geophys Res 80(11):1526–1530

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Walloon Region (Belgium) through SMARTWATER project. The authors would like to gratefully acknowledge Pr. Imai for providing useful papers and references as well as Pr. Michael Heap for providing original figures and data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cerfontaine.

Appendix: List of Papers

Appendix: List of Papers

References

Material

Frequency, rate

Type

N max

Fatigue limit

Load signal

Grover et al. (1950)

Limestone

Uniaxial

0.65

Constant

Shreiner and Pavlova (1958)

Burdine (1963)

Sandstone

15–50 Hz

Uniaxial, triaxial

1 × 106

0.74

Constant

Haimson and Kim (1971)

Marbre

2–4 Hz

Uniaxial

1 × 106

0.75

Constant

Attewell and Farmer (1973)

Limestone

0.3–20 Hz

Uniaxial

4.1 × 104

Constant

Brown and Hudson (1974)

Gypsum plaster

0.5–2 Hz

Uniaxial

1.4 × 104

Constant

Scholz and Kranz (1974)

Granite

1 × 10−5 /s

Uniaxial

2 × 101

Constant

Rajaram (1981)

Westerly granite

1 Hz

Uniaxial

1 × 106

0.73

Constant

Singh (1989)

Sandstone

1 Hz

Uniaxial

1 × 104

0.87

Constant

Tien et al. (1990)

Sandstone

0.1–1 Hz

Triaxial

1 × 103

Constant

Zhenyu and Haihong (1990)

Sandstone, marble

0.0019–0.005 Hz

Uniaxial

Constant, ramp

Li et al. (1992)

Sandstone

0.5 Hz

Brazilian

3 × 104

Constant

Martin and Chandler (1994)

Granite

0.75 Mpa/s

Uniaxial, triaxial

Damage

Celestino et al. (1995)

Granite

7 kN/min

Brazilian

2.3 × 101

Constant

Eberhardt et al. (1999)

Granite

0.25 MPa/s

Uniaxial

Damage

Yamashita et al. (1999)

Tuff, sandstone, marble, granite

1 Hz

Uniaxial

1 × 106

0.55–0.80

Constant

Royer-Carfagni and Salvatore (2000)

Marble

1–2 Mpa/s

Uniaxial

1.8 × 102

Constant

Cattaneo and Labuz (2001)

Marble

Flexion

Damage

Lavrov (2001

Limestone

Uniaxial, Brazilian

Damage

Gatelier et al. (2002)

Sandstone

0.025–0.2 Hz

Uniaxial, triaxial

Damage

Li et al. (2003)

Sandstone

2–20 Hz

Uniaxial

Damage

Åkesson et al. (2004)

Granite

4 Hz

Uniaxial

3.5 × 104

0.6

Constant

Ko (2005)

Gypsum

0.5 Hz

Uniaxial

4 × 103

Constant

Bagde and Petroš (2005a)

Sandstone

0.1–1–10 Hz

Uniaxial

Ramp

Zhang et al. (2008)

Reconstituted

0.02, 2, 1 Hz

Uniaxial

Constant

Heap and Faulkner (2008)

Granite

2.5 MPa/min

Uniaxial

Damage

Mitchell and Faulkner (2008)

Granite, granodiorite

3.3 × 10−4 Hz

Triaxial

1 × 101

Constant

Xiao et al. (2009)

Granite

0.2 Hz

Uniaxial

Constant

Heap et al. (2009)

Basalt

Uniaxial

Damage

Heap et al. (2010)

Basalt, sandstone, granite

7 × 10−6 s−1

Triaxial

Damage

Xiao et al. (2010)

Granite

0.2 Hz

Uniaxial

3 × 103

Constant

Xiao et al. (2010)

Granite

0.2 Hz

Uniaxial

1 × 103

Constant

Fuenkajorn and Phueakphum (2010)

Salt

0.001–0.03 Hz

Triaxial

1 × 103

Constant

Erarslan and Williams (2012b)

Tuff

1 Hz

Brazilian

1 × 105

0.7

Constant, ramp

Erarslan and Williams (2012a)

Brisbane

1 Hz

Brazilian

2.9 × 103

Ramp

Liu and He (2012)

Sandstone

1 Hz

Triaxial

6.2 × 102

Constant

Guo et al. (2012)

Salt

1 Hz

Uniaxial

1.5 × 104

0.75

Constant

David et al. (2012)

Sandstone, granite

2 × 10−6 s−1

Uniaxial

Damage

Wang et al. (2013)

Granite

50 N/s

Triaxial

Damage

Ma et al. (2013)

Salt

0.025 –0.1 Hz

Triaxial

8.5 × 102

Constant

Song et al. (2013)

Salt

0.36–10 kN/s

Uniaxial

6 × 102

Constant

Trippetta et al. (2013)

Evaporites

7 × 10−6 s−1

Uniaxial

Damage

Faoro et al. (2013)

Granite, basalt

5 × 10−6 m/s

Triaxial

Damage

Kendrick et al. (2013)

Volcanic

1 × 10−5 s−1

Uniaxial

Damage

Bastian et al. (2014)

Sandstone

1–6 mm/min

Uniaxial, triaxial

1 × 102

Constant

Erarslan et al. (2014)

Tuff

Brazilian

\(8\times 10^5\)

0.68

Constant, ramp

Nejati and Ghazvinian (2014)

Marble, sandstone, limestone

1 Hz

Brazilian

\(3\times 10^3\)

0.6/0.7/0.8

Constant

Le et al. (2014)

Sandstone

1 Hz

Flexion

\(5.5 \times 10^3\)

Constant

Liu et al. (2014)

Salt

1 Hz

Uniaxial

Damage

Pola et al. (2014)

Lava, pyroclastic, tuff, ignimbrite

4 mm/h

Uniaxial

Damage

Ni (2014)

Granite

0.01–1 Hz

Uniaxial

Constant

Momeni et al. (2015)

Granite

0.1–5 Hz

Uniaxial

\(2.4\times 10^3\)

Constant

Voznesenskii et al. (2015)

Limestone, gabbro, marble

Uniaxial

200

Constant

Yang et al. (2015)

Sandstone

0.08 mm/min

Triaxial

Damage

Schaefer et al. (2015)

Basalt

\(10^{-5}\) s\(^{-1}\)

Uniaxial

Damage

Voznesenskii et al. (2016)

Gypsum

Uniaxial

\(1\times 10^2\)

Constant

Taheri et al. (2016)

Sandstone

0.5 mm/min

Triaxial

\(2.2\times 10^3\)

Constant, damage

Ghamgosar and Erarslan (2016)

Tuff

1–5 Hz

Brazilian

Ramp, damage

Erarslan (2016)

Tuff

Brazilian

Constant, ramp

Wang et al. (2016)

Salt

0.05 kN/s

Brazilian

\(5.2 \times 10^3\)

Damage

Fan et al. (2016)

Salt

2 kN/s

Uniaxial

\(9 \times 10^1\)

Interval

Jiang et al. (2016)

Salt

2 kN/s

Uniaxial

\(6 \times 10^1\)

Interval

Song et al. (2016)

Sandstone

0.12 mm/min

Uniaxial

Damage

Meng et al. (2016)

Sandstone

0.5–4 kN/s

Uniaxial

Damage

Karakus et al. (2016)

Sandstone

Uniaxial

\(1\times 10^4\)

Constant

Fan et al. (2017)

Salt

2 kN/s

Uniaxial

\(9 \times 10^1\)

Interval

Jobli et al. (2017)

Granite

1 Hz

Uniaxial

\(1\times 10^2\)

Constant

Yang et al. (2017)

Marble

0.02 mm/s

Triaxial

Damage

Wang et al. (2017)

Sandstone

Triaxial

Damage

Ghamgosar et al. (2017)

Tuff/monzonite

1, 5 Hz

Brazilian

Ramp

Voznesenskii et al. (2017)

Salt

0.0001–2 mm/min

Uniaxial

\(\times 10^2\)

Constant

Liu et al. (2017)

Sandstone

1 Hz

Brazilian

\(8.5 \times 10^2\)

Constant

Liu et al. (2017)

Artificial

0.01–20 Hz

Uniaxial

\(1.2\times 10^3\)

Constant

Jamali Zavareh et al. (2017)

Gabbro, onyx, limestone

5 Hz

Bending

\(>1\times 10^6\)

0.4–0.6

Constant

Munoz and Taheri (2017)

Sandstone

\(0.18 \times 10^{-4}\) s\(^{-1}\)

Uniaxial

Damage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerfontaine, B., Collin, F. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives. Rock Mech Rock Eng 51, 391–414 (2018). https://doi.org/10.1007/s00603-017-1337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1337-5

Keywords

Navigation