Skip to main content
Log in

Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

High-temperature treatment may cause changes in physical and mechanical properties of rocks. Temperature changing rate (heating, cooling and both of them) plays an important role in those changes. Thermal conductivity tests, ultrasonic pulse velocity tests, gas permeability tests and triaxial compression tests are performed on granite samples after a heating and rapid cooling treatment in order to characterize the changes in physical and mechanical properties. Seven levels of temperature (from 25 to 900 °C) are used. It is found that the physical and mechanical properties of granite are significantly deteriorated by the thermal treatment. The porosity shows a significant increase from 1.19% at the initial state to 6.13% for samples heated to 900 °C. The increase in porosity is mainly due to three factors: (1) a large number of microcracks caused by the rapid cooling rate; (2) the mineral transformation of granite through high-temperature heating and water-cooling process; (3) the rapid cooling process causes the mineral particles to weaken. As the temperature of treatment increases, the thermal conductivity and P-wave velocity decrease while the gas permeability increases. Below 200 °C, the elastic modulus and cohesion increase with temperature increasing. Between 200 and 500 °C, the elastic modulus and cohesion have no obvious change with temperature. Beyond 500 °C, as the temperature increases, the elastic modulus and cohesion obviously decrease and the decreasing rate becomes slower with the increase in confining pressure. Poisson’s ratio and internal frictional coefficient have no obvious change as the temperature increases. Moreover, there is a transition from a brittle to ductile behavior when the temperature becomes high. At 900 °C, the granite shows an obvious elastic–plastic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abdulagatov IM, Emirov SN (2006) Effect of pressure and temperature on the thermal conductivity of rocks. J Chem Eng Data 51(1):22–33

    Article  Google Scholar 

  • Alhomadhi ES (2014) New correlations of permeability and porosity versus confining pressure, cementation, and grain size and new quantitatively correlation relates permeability to porosity. Arab J Geosci 7(7):2871–2879

    Article  Google Scholar 

  • Aversa S, Evangelista A (1998) The mechanical behaviour of a pyroclastic rock: yield strength and “destructuration” effects. Rock Mech Rock Eng 31(1):25–42

    Article  Google Scholar 

  • Bai M, Reinicke KM, Teodoriu C, Fichter C (2012) Investigation on water–rock interaction under geothermal hot dry rock conditions with a novel testing method. J Petrol Sci Eng s 90–91(7):26–30

    Article  Google Scholar 

  • Bauer SJ, Handin J (1983) Thermal expansion and cracking of three confined water-saturated igneous rocks to 800 °C. Rock Mech Rock Eng 16(3):181–198

    Article  Google Scholar 

  • Brotons V, Tomás R, Ivorra S et al (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian's calcarenite[J]. Eng Geol 167:117–127

    Article  Google Scholar 

  • Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22(7):1456–1461

    Article  Google Scholar 

  • Chen J, Jiang F (2015) Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy. Renew Energy 74:37–48

    Article  Google Scholar 

  • Chen F, Giraud A, Grgic D, Kalo K (2017) A composite sphere assemblage model for porous oolitic rocks: application to thermal conductivity. J Rock Mech Geotech Eng 9(1):54–61

    Article  Google Scholar 

  • Dobson DP, Meredith PG, Boon SA (2002) Simulation of subduction zone seismicity by dehydration of serpentine. Science 298(5597):1407–1410

    Article  Google Scholar 

  • Du S, Hua L, Zhi H, Chen H (2004) Testing study on mechanical properties of post-high-temperature granite. Chin J Rock Mechan Eng 23(14):2359–2364

    Google Scholar 

  • Dwivedi RD, Goel RK, Prasad VVR et al (2008) Thermo-mechanical properties of Indian and other granites[J]. Int J Rock Mech Min Sci 45(3):303–315

    Article  Google Scholar 

  • Feng Z, Zhao Y, Zhou A, Zheng N (2012) Development program of hot dry rock geothermal resource in the Yangbajing Basin of China. Renew Energy 39:490–495

    Article  Google Scholar 

  • Franklin JA, Vogler UW, Szlavin J (1979) Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties: part 1: suggested methods for determining water content, porosity, density, absorption and related properties. Int J Rock Mech Min Sci 16:143–151

    Google Scholar 

  • Géraud Y (1994) Variations of connected porosity and inferred permeability in a thermally cracked granite. Geophys Res Lett 21(11):979–982

    Article  Google Scholar 

  • Géraud Y, Mazerolle F, Raynaud S (1992) Comparison between connected and overall porosity of thermally stressed granites. J Struct Geol 14(14):981–990

    Article  Google Scholar 

  • Gueguen Y, Dienes J (1989) Transport properties of rocks from statistics and percolation. Math Geosci 21(1):1–13

    Google Scholar 

  • Hashemi SS, Melkoumian N, Taheri A (2015) A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders. J Rock Mech Geotech Eng 7(5):519–531

    Article  Google Scholar 

  • Heap MJ, Violay M, Wadsworth FB et al (2017) From rock to magma and back again: the evolution of temperature and deformation mechanism in conduit margin zones. Earth Planet Sci Lett 463:92–100

    Article  Google Scholar 

  • Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks—a review. Int J Rock Mech Min Sci Geomech Abstr 20(1):3–10

    Article  Google Scholar 

  • Homand-Etienne F, Houpert R (1989) Thermally induced microcracking in granites: characterization and analysis[C]. Int J Rock Mech Min Sci Geomech Abstr 26(2):125–134

    Article  Google Scholar 

  • Inserra C, Biwa S, Chen Y (2013) Influence of thermal damage on linear and nonlinear acoustic properties of granite. Int J Rock Mech Min Sci 62(5):96–104

    Google Scholar 

  • Jansen DP, Carlson SR, Young RP, Hutchins DA (1993) Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite. J Geophys Res 982(B12):22231–22243

    Article  Google Scholar 

  • Kim K, Kemeny J, Nickerson M (2014) Effect of rapid thermal cooling on mechanical rock properties. Rock Mech Rock Eng 47(6):2005–2019

    Article  Google Scholar 

  • Kolditz O, Clauser C (1998) Numerical simulation of flow and heat transfer in fractured crystalline rocks: application to the hot dry rock site in Rosemanowes (U.K.). Geothermics 27(1):1–23

    Article  Google Scholar 

  • Kompaníková Z, Gomez-Heras M, Michňová J, Durmeková T, Vlčko J (2014) Sandstone alterations triggered by fire-related temperatures. Environ Earth Sci 72(7):2569–2581

    Article  Google Scholar 

  • Konecny P, Kozusnikova A, Goel RK, Dwivedi RD, Swarup A, Prasad VVR (2005) A comparative study of influence of temperature on granites from India and Czech Republic, In: Proceedings of EUROCK 2005, Brno, Czech Republic, p 265–267

  • Liu Q, Xu X (2000) Damage analysis of brittle rock at high temperature. Chin J Rock Mech Eng 19(4):408–411

    Google Scholar 

  • Liu S, Xu J (2014) Mechanical properties of Qinling biotite granite after high temperature treatment. Int J Rock Mech Min Sci 71:188–193

    Google Scholar 

  • Lönnqvist M, Hökmark H (2016) Thermal, mechanical and thermo-mechanical assessment of the rock mass surrounding SKB’s prototype repository at Äspö HRL. Rock Mech Rock Eng 49(4):1123–1142

    Article  Google Scholar 

  • Loosveldt H, Lafhaj Z, Skoczylas F (2002) Experimental study of gas and liquid permeability of a mortar. Cem Concr Res 32(9):1357–1363

    Article  Google Scholar 

  • McLaren JR, Titchel I (1981) Physical properties of granite relevant to near field conditions in a nuclear waste depository. AERE, Harwell, Report AERE-R-10046

  • Menéndez B, David C, Darot M (1999) A study of the crack network in thermally and mechanically cracked granite samples using confocal scanning laser microscopy. Phys Chem Earth Part A 24(7):627–632

    Article  Google Scholar 

  • Meredith PG, Atkinson BK (1985) Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro. Phys Earth Planet Inter 39(1):33–51

    Article  Google Scholar 

  • Nasseri MHB, Schubnel A, Young RP (2007) Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min Sci 44(4):601–616

    Article  Google Scholar 

  • Nasseri MHB, Tatone BSA, Grasselli G, Young RP (2009) Fracture toughness and fracture roughness interrelationship in thermally treated Westerly Granite. Pure appl Geophys 166:801–822

    Article  Google Scholar 

  • Popov Y, Beardsmore G, Clauser C, Roy S (2016) ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mech Rock Eng 49:1–29

    Article  Google Scholar 

  • Richards HG, Parker RH, Green ASP, Jones RH, Nicholls JDM, Nicol DAC, Randall MM, Richards S, Stewart RC, Willis-Richards J (1994) The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985–1988). Geothermics 23(2):73–109

    Article  Google Scholar 

  • Ruedrich J, Weiss T, Siegesmund S, Tschegg EK (2002) Thermal behaviour of weathered and consolidated marbles. Geological Society of London 205(1):255–271

    Article  Google Scholar 

  • Secq J (2006) Collier de mesure de la déformation latérale d’une éprouvette lors d’éssais de compression, notamment uniaxiale ou triaxiale, WO 2006125903 A1[P]

  • Seipold U (1998) Temperature dependence of thermal transport properties of crystalline rocks—a general law. Tectonophysics 291(s 1–4):161–171

    Article  Google Scholar 

  • Shao S, Wasantha PLP, Ranjith PG (2014) Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes. Int J Rock Mech Min Sci 70(9):381–387

    Google Scholar 

  • Siegesmund S, Ullemeyer K, Weiss T, Tschegg EK (2000) Physical weathering of marbles caused by anisotropic thermal expansion. Int J Earth Sci 89(1):170–182

    Article  Google Scholar 

  • Sun Q, Zhang Z, Xue L (2013) Physico-mechanical properties variation of rock with phase transformation under high temperature. Chin J Rock Mech Eng 32(5):935–942

    Google Scholar 

  • Tran NH, Rahman SS (2007) Development of hot dry rocks by hydraulic stimulation: natural fracture network simulation. Theoret Appl Fract Mech 47(1):77–85

    Article  Google Scholar 

  • Ueda A, Nakatsuka Y, Kunieda M, Kuroda Y, Yajima T, Satoh H, Sugiyama K, Ozawa A, Ohsumi T, Wakahama H, Mito S, Kaji Y, Kaieda H (2009) Laboratory and field tests of CO 2—water injection into the Ogachi hot dry rock site. Japan. Energy Procedia 1(1):3669–3674

    Article  Google Scholar 

  • Vázquez P, Shushakova V, Gómez-Heras M (2015) Influence of mineralogy on granite decay induced by temperature increase: experimental observations and stress simulation. Eng Geol 189:58–67

    Article  Google Scholar 

  • Vinciguerra S, Trovato C, Meredith PG, Benson PM (2005) Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. Int J Rock Mech Min Sci 42(7–8):900–910

    Article  Google Scholar 

  • Wan Z, Zhao Y, Kang J (2005) Forecast and evaluation of hot dry rock geothermal resource in China. Renew Energy 30(12):1831–1846

    Article  Google Scholar 

  • Wan Z, Zhao Y, Dong F (2008) Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses. J Rock Mech Eng 27(1):72–77

    Google Scholar 

  • Wei G, Meng J, Du X (2015) Performance analysis on a hot dry rock geothermal resource power generation system based on Kalina cycle. Energy Procedia 75:937–945

    Article  Google Scholar 

  • Wen H, Lu JH, Xiao Y (2015) Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield. Thermochim Acta 619:41–47

    Article  Google Scholar 

  • Xi BP, Zhao Y (2010) Experimental research on mechanical properties of water-cooled granite under high temperatures within 600 °C. Chin J Rock Mech Eng 29:892–898

    Google Scholar 

  • Xu XL, Gao F, Shen XM (2008a) Mechanical characteristics and microcosmic mechanisms of granite under temperature loads. J China Univ Min Technol 18(3):413–417

    Article  Google Scholar 

  • Xu XL, Feng G, Gao YN (2008b) Effect of high temperatures on the mechanical characteristics and crystal structure of granite. J China Univ Min Technol 37(3):402–406

    Google Scholar 

  • Xu XL, Gao F, Zhang ZZ (2014) Research on triaxial compression test of granite after high temperatures. Rock Soil Mech 35(11):3177–3183

    Google Scholar 

  • Yao M, Rong G, Zhou C, Peng J (2016) Effects of thermal damage and confining pressure on the mechanical properties of coarse marble. Rock Mech Rock Eng 49(6):2043–2054

    Article  Google Scholar 

  • Yin TB, Shu RH, Li XB (2016) Comparison of mechanical properties in high temperature and thermal treatment granite. Trans Nonferrous Metals Soc China 26(7):1926–1937

    Article  Google Scholar 

  • Yu QL, Ranjith PG, Liu HY, Yang TH, Tang SB, Tang CA, Yang SQ (2015) A mesostructure-based damage model for thermal cracking analysis and application in granite at elevated temperatures. Rock Mech Rock Eng 48(6):2263–2282

    Article  Google Scholar 

  • Yu C, Ji S, Li Q (2016) Effects of porosity on seismic velocities, elastic moduli and Poisson’s ratios of solid materials and rocks. J Rock Mech Geotech Eng 8(1):35–49

    Article  Google Scholar 

  • Zaigham NA, Nayyar ZA (2010) Renewable hot dry rock geothermal energy source and its potential in Pakistan. Renew Sustain Energy Rev 14(14):1124–1129

    Article  Google Scholar 

  • Zeng YC, Su Z, Wu NY (2013) Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy 63(63):268–282

    Article  Google Scholar 

  • Zhang F, Hu DW, Xie SY (2014) Influences of temperature and water content on mechanical property of argillite. Eur J Environ Civ Eng 18(2):173–189

    Article  Google Scholar 

  • Zhang W, Sun Q, Hao S (2016) Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng 98:1297–1304

    Article  Google Scholar 

  • Zhao Y, Feng Z, Xi B (2015) Deformation and instability failure of borehole at high temperature and high pressure in hot dry rock exploitation. Renew Energy 77(1):159–165

    Article  Google Scholar 

  • Zhi L, Xu YJ, Liu Z (2013) Research in impacting failure behavior and fluctuation characteristics of granite exposed to high temperature. Chin J Rock Mech Eng 32(1):135–142

    Google Scholar 

  • Zhou H, Liu H, Hu D (2016) Anisotropies in mechanical behaviour, thermal expansion and P-wave velocity of sandstone with bedding planes. Rock Mech Rock Eng 49:1–8

    Article  Google Scholar 

  • Zhu S, Zhang W, Sun Q et al (2017) Thermally induced variation of primary wave velocity in granite from Yantai: experimental and modeling results. Int J Therm Sci 114:320–326

    Article  Google Scholar 

  • Zong Y, Han L, Wei J, Wen S (2016) Mechanical and damage evolution properties of sandstone under triaxial compression. Int J Min Sci Technol 26(4):601–607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfu Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhao, J., Hu, D. et al. Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment. Rock Mech Rock Eng 51, 677–694 (2018). https://doi.org/10.1007/s00603-017-1350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1350-8

Keywords

Navigation