Skip to main content
Log in

The Modeling of Time-Dependent Deformation and Fracturing of Brittle Rocks Under Varying Confining and Pore Pressures

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A numerical hydro-mechanical model for brittle creep is proposed to describe the time-dependent deformation of heterogeneous brittle rock under constant confining and pore pressures. Material heterogeneity and a local material degradation law are incorporated into the model at the mesoscale which affects the mechanical behavior of rocks to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The model also describes the spatiotemporal acoustic emissions in the rock during the progressive damage process. The approach presented in this contribution differs from macroscopic approaches based on constitutive laws and microscopic approaches focused on fracture propagation. The model is first validated using experimental data for porous sandstone and is then used to simulate brittle creep tests under varying constant confining and pore pressures and applied differential stresses. We further explore the influence of sample homogeneity on brittle creep. The model accurately replicates the classic creep behavior observed in laboratory brittle creep experiments. In agreement with experimental observations, our model shows that decreasing effective pressure, increasing the applied differential stress, and decreasing sample homogeneity increase the creep strain rate and decrease the time-to-failure, respectively. The model shows that complex macroscopic time-dependent behavior can be explained by the microscale interaction of elements. The fact that the simulations are able to capture a similar hydro-mechanical time-dependent response to that of laboratory experiments implies that the model is an appropriate tool to investigate the complex time-dependent behavior of heterogeneous brittle rocks under coupled hydro-mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Material constant

D :

Damage variable

e f :

Energy released from a failed element

e ij :

Strain deviator of the elastic strain components

E, E 0 :

Young’s moduli of damaged material and undamaged material

f i :

Body forces per unit volume

F 1, F 2 :

Tensile and shear damage threshold functions

f t0, f c0 :

Uniaxial tensile strength and uniaxial compressive strength

G :

Shear modulus

h :

The convective heat transfer coefficient

k :

The coefficient of permeability

K′, K s :

Bulk modulus of the porous medium, and effective bulk modulus of the solid constituent

m :

A fraction constant

n :

Stress component of greater than one

n i :

The number of failed elements in the ith step

N :

Total number of elements

P, P eff :

Fluid pore pressure and effective pressure

R :

Universal gas constant

r :

Constitutive coefficient

S ij :

Stress deviator tensor of the elastic stress components

T :

Absolute temperature

U :

Creep activation energy

ν e :

The volume of single element

V f, V :

The volume of failed elements, the total volume of all elements

α :

Biot’s efficient

φ :

Porosity

β 1 :

The bulk modulus of fluid

ε :

Total strain

ε 1, ε 3 :

The maximum and minimum principal strain

ε C :

Creep strain

ε e :

Elastic strain

ε ij :

Small strain tensor

ε t0, ε c0 :

The maximum tensile and compressive strain

ε tr, ε cr :

The residual tensile and compressive strain corresponding to residual strength

ε tu :

The ultimate tensile strain corresponding to complete damage

K :

The intrinsic permeability in a general continuum

ρ l :

The fluid density

u, u 0 :

Scale parameter of an element, the average element parameter

u i :

Mechanical parameter of the element i

μ l :

The dynamic fluid viscosity

δ ij :

Kronecker delta

λ :

Lame’s constant

ζ :

Residual strength coefficient

η :

Ultimate tensile strain coefficient

ρ :

Bulk density of medium

χ :

Homogeneity index

ϕ :

Angle of internal friction

ω i :

Random numbers ranging from 0 to 1

ψ :

The ratio of the volume of failed rock to total volume of rock

ξ :

The factor that reflects damage-induced permeability increase

σ e :

Effective stress

σ ij :

Total stress tensor

σ ii :

Average stress

σ 1, σ 2 :

The maximum and minimum principal stress

References

  • Aker E, Kühn D, Vavryčuk V, Soldal M, Oye V (2014) Experimental investigation of acoustic emissions and their moment tensors in rock during failure. Int J Rock Mech Min Sci 70:286–295

    Article  Google Scholar 

  • Amitrano D, Helmstetter A (2006) Brittle creep, damage, and time to failure in rocks. J Geophys Res B 111:1–17

    Article  Google Scholar 

  • Andrade E, Randall R (1949) The Rehbinder effect. Nature 164:1127

    Article  Google Scholar 

  • Atkinson BK (1984) Subcritical crack growth in geological materials. J Geophys Res 89:4077–4114

    Article  Google Scholar 

  • Atkinson BK, Meredith PG (1981) Stress corrosion cracking of quartz: a note on the influence of chemical environment. Tectonophysics 77:T1–T11

    Article  Google Scholar 

  • Baud P, Meredith PG (1997) Damage accumulation during triaxial creep of Darley Dale sandstone from pore volumometry and acoustic emission. Int J Rock Mech Min Sci 34:24.e21–24.e10

    Google Scholar 

  • Baud P, Zhu W, Wong TF (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res 105:16371–16389

    Article  Google Scholar 

  • Baud P, Reuschlé T, Ji Y, Cheung CSN, Wong T-F (2015) Mechanical compaction and strain localization in Bleurswiller sandstone. J Geophys Res 120:6501–6522

    Article  Google Scholar 

  • Bell AF, Greenhough J, Heap MJ, Main IG (2011a) Challenges for forecasting based on accelerating rates of earthquakes at volcanoes and laboratory analogues. Geophys J Int 185:718–723

    Article  Google Scholar 

  • Bell AF, Naylor M, Heap MJ, Main IG (2011b) Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys Res Lett 38:165–176

    Google Scholar 

  • Biot MA (1956) General solutions of equations of elasticity and consolidation for a porous material. J Appl Phys 23:91–96

    Google Scholar 

  • Brantut N, Baud P, Heap MJ, Meredith PG (2012) Micromechanics of brittle creep in rocks. J Geophys Res Solid Earth.117:B8

    Article  Google Scholar 

  • Brantut N, Heap MJ, Meredith PG, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43

    Article  Google Scholar 

  • Brantut N, Heap MJ, Baud P, Meredith PG (2014a) Mechanisms of time-dependent deformation in porous limestone. J Geophys Res 119:5444–5463

    Article  Google Scholar 

  • Brantut N, Heap MJ, Baud P, Meredith PG (2014b) Rate- and strain-dependent brittle deformation of rocks. J Geophys Res 119:1818–1836

    Article  Google Scholar 

  • Carter NL, Hansen FD (1983) Creep of rock salt. Tectonophysics 92:275–333

    Article  Google Scholar 

  • Chen W, Konietzky H (2014) Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks. Tectonophysics 633:164–175

    Article  Google Scholar 

  • Cristescu ND (1993) A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech Abstr 30:125–140

    Article  Google Scholar 

  • Dubey RK, Gairola VK (2008) Influence of structural anisotropy on creep of rock salt from Simla Himalaya, India: an experimental approach. J Struct Geol 30:710–718

    Article  Google Scholar 

  • Duda M, Renner J (2012) The weakening effect of water on the brittle failure strength of sandstone. Geophys J Int 192:1091–1108

    Article  Google Scholar 

  • Farquharson J, Heap MJ, Baud P, Reuschlé T, Varley NR (2016) Pore pressure embrittlement in a volcanic edifice. Bull Volcanol 78:1–19

    Article  Google Scholar 

  • Fortin J, Stanchits S, Dresen G, Gueguen Y (2009) Acoustic emissions monitoring during inelastic deformation of porous sandstone: comparison of three modes of deformation. Pure Appl Geophys 166:823–841

    Article  Google Scholar 

  • Golshani A, Okui Y, Oda M, Takemura T (2006) A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech Mater 38:287–303

    Article  Google Scholar 

  • Heap MJ, Baud P, Meredith PG (2009a) Influence of temperature on brittle creep in sandstones. Geophys Res Lett 36:L19305

    Article  Google Scholar 

  • Heap MJ, Baud P, Meredith PG, Bell AF, Main IG (2009b) Time-dependent brittle creep in Darley Dale sandstone. J Geophys Res 114:1–22

    Article  Google Scholar 

  • Heap MJ, Baud P, Meredith PG, Vinciguerra S, Bell AF, Main IG (2011) Brittle creep in basalt and its application to time-dependent volcano deformation. Earth Planet Sci Lett 307:71–82

    Article  Google Scholar 

  • Heap MJ, Brantut N, Baud P, Meredith PG (2015) Time-dependent compaction band formation in sandstone. Br J Forensic Pract 11:3–7

    Google Scholar 

  • Heard HC (1976) Comparison of the flow properties of rocks at crustal conditions. Philos Trans R Soc Lond A 283:173–186

    Article  Google Scholar 

  • Homand-Etienne F, Hoxha D, Shao JF (1998) A continuum damage constitutive law for brittle rocks. Comput Geotech 22:135–151

    Article  Google Scholar 

  • Jeager JC, Cook NGW, Zimmerman R (eds) (2007) Fundamentals of rock mechanics. Wiley-Blackwell, Singapore

    Google Scholar 

  • Karrech A, Schrank C, Freij-Ayoub R, Regenauer-Lieb K (2014) A multi-scaling approach to predict hydraulic damage of poromaterials. Int J Mech Sci 78:1–7

    Article  Google Scholar 

  • Katz O, Reches Z (2002) Pre-failure damage, time-dependent creep and strength variations of a brittle granite. In: Proceedings of the fifth international conference on anal discontinuous deformation. Ben-Gurion University, Balkema, Rotterdam

  • Kranz RL (1980) The effects of confining pressure and stress difference on static fatigue of granite. J Geophys Res 85:1854–1866

    Article  Google Scholar 

  • Kranz RL, Scholz CH (1977) Critical dilatant volume of rocks at the onset of tertiary creep. J Geophys Res 82:4893–4898

    Article  Google Scholar 

  • Kranz RL, Harris WJ, Carter NL (1982) Static fatigue of granite at 200 °C. Geophys Res Lett 9:1–4

    Article  Google Scholar 

  • Kraus H (1980) Creep analysis. Wiley, New York

    Google Scholar 

  • Lajtai E, Schmidtke R, Bielus L (1987) The effect of water on the time-dependent deformation and fracture of a granite. Int J Rock Mech Min Sci Geomech Abstr. 24:24–255

    Article  Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, Berlin

    Google Scholar 

  • Li X, Konietzky H (2014) Numerical simulation schemes for time-dependent crack growth in hard brittle rock. Acta Geotech 10:1–19

    Google Scholar 

  • Li X, Konietzky H, Li X (2016) Numerical study on time dependent and time independent fracturing processes for brittle rocks. Eng Fract Mech 163:89–107

    Article  Google Scholar 

  • Lin QX, Liu YM, Tham LG, Tang CA, Lee PKK, Wang J (2009) Time-dependent strength degradation of granite. Int J Rock Mech Min Sci 46:1103–1114

    Article  Google Scholar 

  • Lockner D (1993a) The role of acoustic-emission in the study of rock fracture. Int J Rock Mech Min Sci 30:883–899

    Article  Google Scholar 

  • Lockner D (1993b) Room temperature creep in saturated granite. J Geophys Res 98:475–487

    Article  Google Scholar 

  • Lockner DA, Madden TR (1991) A multiple-crack model of brittle-fracture. 2. Time-dependent simulations. J Geophys Res 96:19643–19654

    Article  Google Scholar 

  • Lu Y, Elsworth D, Wang L (2014) A dual-scale approach to model time-dependent deformation, creep and fracturing of brittle rocks. Comput Geotech 60:61–76

    Article  Google Scholar 

  • Mallet C, Fortin J, Guéguen Y, Bouyer F (2015) Brittle creep and subcritical crack propagation in glass submitted to triaxial conditions. J Geophys Res Solid Earth 120(2):879–893

    Article  Google Scholar 

  • Maranini E, Brignoli M (1999) Creep behavior of a weak rock: experimental characterization. Int J Rock Mech Min Sci 36(1):127–138

    Article  Google Scholar 

  • Maranini E, Yamaguchi T (2001) A non-associated viscoplastic model for the behavior of granite in triaxial compression. Mech Mater 33:283–293

    Article  Google Scholar 

  • Meredith PG, Atkinson BK (1983) Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys J Int 75:1–21

    Article  Google Scholar 

  • Nicolas A, Fortin J, Regnet JB, Verberne BA, Plümper O, Dimanov A, Spiers CJ, Guéguen Y (2017) Brittle and semi-brittle creep of Tavel limestone deformed at room temperature. J Geophys Res 122:4436–4459

    Article  Google Scholar 

  • Ngwenya B, Main I, Elphick S, Crawford B, Smart B (2001) A constitutive law for low-temperature creep of water-saturated sandstones. J Geophys Res 106:21811–21826

    Article  Google Scholar 

  • Ohnaka M (1983) Acoustic emission during creep of brittle rock. Int J Rock Mech Min Sci Geomech Abstr 20:121–134

    Article  Google Scholar 

  • Okubo S, Fukui K, Hashiba K (2010) Long-term creep of water-saturated tuff under uniaxial compression. Int J Rock Mech Min Sci 47:839–844

    Article  Google Scholar 

  • Pan Z, Wan-xie Z (1991) The parametric variational principle for Perzyna model in viscoplasticity. Appl Math Mech 12:433–437

    Article  Google Scholar 

  • Pellet F, Hajdu A, Deleruyelle F, Besnus F (2005) A viscoplastic model including anisotropic damage for the time dependent behavior of rock. Int J Numer Anal Methods Geomech 29:941–970

    Article  Google Scholar 

  • Peng T-R, Wang C-H, Hsu S-M, Wang G-S, Su T-W, Lee J-F (2010) Identification of groundwater sources of a local-scale creep slope: using environmental stable isotopes as tracers. J Hydrol 381:151–157

    Article  Google Scholar 

  • Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377

    Article  Google Scholar 

  • Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354

    Article  Google Scholar 

  • Schubnel A, Walker E, Thompson BD, Fortin J, Guéguen Y, Young RP (2006) Transient creep, aseismic damage and slow failure in Carrara marble deformed across the brittle-ductile transition. Geophys Res Lett 33:L17301

    Article  Google Scholar 

  • Shao JF, Duveau G, Hoteit N, Sibai M, Bart M (1997) Time dependent continuous damage model for deformation and failure of brittle rock. Int J Rock Mech Min Sci 34:285.e281–285.e213

    Google Scholar 

  • Shao JF, Zhu QZ, Su K (2003) Modeling of creep in rock materials in terms of material degradation. Comput Geotech 30:549–555

    Article  Google Scholar 

  • Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43:582–592

    Article  Google Scholar 

  • She C, Xuan C (2010) Influence of high pore water pressure on creep properties of rock. Chin J Rock Mech Eng 29:1603–1609

    Google Scholar 

  • Sterpi D, Gioda G (2009) Visco-plastic behavior around advancing tunnels in squeezing rock. Rock Mech Rock Eng 42:319–339

    Article  Google Scholar 

  • Tang CA (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34:249–261

    Article  Google Scholar 

  • Vasseur J, Wadsworth FB, Lavallée Y, Bell AF, Main IG, Dingwell DB (2015) Heterogeneity: the key to failure forecasting. Sci Rep 5:13259

    Article  Google Scholar 

  • Vasseur J, Wadsworth FB, Heap MJ, Main IG, Lavallée Y, Dingwell DB (2017) Does an inter-flaw length control the accuracy of rupture forecasting in geological materials? Earth Planet Sci Lett 475:181–189

    Article  Google Scholar 

  • Voight B (1989) A relation to describe rate-dependent material failure. Science 243:200–203

    Article  Google Scholar 

  • Wang WM, Sluys LJ, De Borst R (2015) Viscoplasticity for instabilities due to strain softening and strain‐rate softening. Int J Numer Meth Eng 40:3839–3864

    Article  Google Scholar 

  • Wasantha PLP, Ranjith PG, Shao SS (2014) Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission. Ultrasonics 54:217–226

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Weiss J, Marsan D (2003) Three-dimensional mapping of dislocation avalanches: clustering and space/time coupling. Science 299:89–92

    Article  Google Scholar 

  • Weng MC, Tsai LS, Liao CY, Jeng FS (2010) Numerical modeling of tunnel excavation in weak sandstone using a time-dependent anisotropic degradation model. Tunn Undergr Space Technol 25:397–406

    Article  Google Scholar 

  • Wong T-F, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res 102:3009–3025

    Article  Google Scholar 

  • Wong TF, Wong RHC, Chau KT, Tang CA (2006) Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech Mater 38:664–681

    Article  Google Scholar 

  • Xu P, Yang S-Q (2016) Permeability evolution of sandstone under short-term and long-term triaxial compression. Int J Rock Mech Min Sci 85:152–164

    Article  Google Scholar 

  • Xu T, Tang C, Zhao J, Li L, Heap MJ (2012) Modelling the time-dependent rheological behavior of heterogeneous brittle rocks. Geophys J Int 189:1781–1796

    Article  Google Scholar 

  • Xu T, Zhou GL, Heap MJ, Zhu WC, Chen CF, Baud P (2017) The influence of temperature on time-dependent deformation and failure in granite: a mesoscale modeling approach. Rock Mech Rock Eng 50:2345–2364

    Article  Google Scholar 

  • Yang S-Q, Jing H-W, Cheng L (2014) Influences of pore pressure on short-term and creep mechanical behavior of red sandstone. Eng Geol 179:10–23

    Article  Google Scholar 

  • Yoshida H, Horii H (1992) A micromechanics-based model for creep behavior of rock. Appl Mech Rev 45:294–303

    Article  Google Scholar 

  • Zhu YY, Cescotto S (1995) A fully coupled elasto-visco-plastic damage theory for anisotropic materials. Int J Solids Struct 32:1607–1641

    Article  Google Scholar 

  • Zhu WC, Wei J, Zhao J, Niu LL (2014) 2D numerical simulation on excavation damaged zone induced by dynamic stress redistribution. Tunn Undergr Space Technol 43:315–326

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by Natural Science Foundation of China (Grant Nos. 51474051, 41672301 and 51761135102), National Basic Research Program (973) of China (Grant No. 2014CB047100), Fundamental Research Funds for the Central Universities of China (N150102002), and the Partenariats Hubert Curien (PHC) Cai Yuanpei Grant (Grant No. 36605ZB) are highly acknowledged. The comments of two reviewers helped improve the clarity of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Zhou, G., Heap, M.J. et al. The Modeling of Time-Dependent Deformation and Fracturing of Brittle Rocks Under Varying Confining and Pore Pressures. Rock Mech Rock Eng 51, 3241–3263 (2018). https://doi.org/10.1007/s00603-018-1491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1491-4

Keywords

Navigation