Skip to main content
Log in

ISRM Suggested Method: Determining Deformation and Failure Characteristics of Rocks Subjected to True Triaxial Compression

  • ISRM Suggested Method
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The purpose of this ISRM Suggested Method is to introduce a guideline on determining deformation and failure characteristics of rocks subjected to true triaxial compression on different stress path. The true triaxial testing apparatus was reviewed by means of the function and engineering application. Some key techniques, such as stress and strain measurements, and reduction of end effect between specimen and metal platens, preventing metal platens interference, were stated and suggested in detail. Methodology of specimen processing, specimen shape, and testing procedure are characterized. There is an explanation of the experimental data processing on stress–strain curves, strength, and fracture mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alejano LR, Bobet A (2012) Drucker–Prager criterion. Rock Mech Rock Eng 45:995–999. https://doi.org/10.1007/s00603-012-0278-2

    Article  Google Scholar 

  • Aubertin M, Li L, Simon R (2000) A multiaxial stress criterion for short- and long-term strength of isotropic rock media. Int J Rock Mech Min Sci 37:1169–1193

    Article  Google Scholar 

  • Bieniawski ZT, Bernede MJ (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: part 1. Suggested method for determining deformability of rock materials in uniaxial compression. Int J Rock Mech Min Sci Geomech Abstr 16(2):138–140

    Article  Google Scholar 

  • Böker R (1915) Die mechanik der bleibenden formanderung in kristallinish aufgebauten Körpern. Verhandl Deut Ingr Mitt Forsch 175:1–51

    Google Scholar 

  • Chang C (2001) True triaxial strength and deformability of crystalline rocks. PhD thesis, University of Wisconsin-Madison

  • Chang C, Haimson B (2012) A failure criterion for rocks based on true triaxial testing. Rock Mech Rock Eng 45:1007–1010. https://doi.org/10.1007/s00603-012-0280-8

    Article  Google Scholar 

  • Esaki T, Kimura T, Aoki K, Nishida T (1988) True triaxial test of rock under stress and strain rate control. In: Donaghe RT, Chaney RC, Silver ML (eds) Advanced triaxial testing of soil and rock. ASTM International, Philadelphia, pp 834–843

    Chapter  Google Scholar 

  • Ewy RT (1999) Wellbore-stability predictions by use of a modified lade criterion. SPE Drill Complet 14:85–91

    Article  Google Scholar 

  • Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression. Int J Rock Mech Min Sci 36:279–289. https://doi.org/10.1016/S0148-9062(99)00006-6

    Article  Google Scholar 

  • Feng X-T, Zhang XW, Kong R, Wang G (2016) A novel Mogi type true triaxial testing apparatus and its use to obtain complete stress–strain curves of hard rocks. Rock Mech Rock Eng 49(5):1649–1662. https://doi.org/10.1007/s00603-015-0875-y

    Article  Google Scholar 

  • Feng X-T, Zhang XW, Yang CX, Kong R, Liu X, Peng S (2017) Evaluation and reduction of the end friction effect in true triaxial tests on hard rocks. Int J Rock Mech Min Sci 97:144–148. https://doi.org/10.1016/j.ijrmms.2017.04.002

    Article  Google Scholar 

  • Föppl A (1900) Abhangigkeit der Bruchgefahr von der Art des Spannungszustandes (Dependence of the risk of breakage on the type of stress state). Mitth Mech Tech Lab K Tech Hochsch Munchen 27:1–35

    Google Scholar 

  • Frash LP, Gutierrez M, Hampton J (2014) True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs. Int J Rock Mech Min Sci 70:496–506. https://doi.org/10.1016/j.ijrmms.2014.05.017

    Article  Google Scholar 

  • Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci 37:285–296. https://doi.org/10.1016/S1365-1609(99)00106-9

    Article  Google Scholar 

  • Haimson B, Fairhurst C (1970) In situ stress determination at great depth by means of hydraulic fracturing. In: Somerton WH (ed) Rock mechanics—theory and practice. Soc. Mining Engr. of AIME, New York, pp 559–584

    Google Scholar 

  • Haimson B, Chang C, Ma X (2016) True triaxial testing of rocks and the effect of the intermediate principal stress on failure characteristics. In: Feng (ed) Rock mechanics and engineering, volume 1: principles. CRC Press/Balkema, Leiden, pp 379–396

    Google Scholar 

  • Ingraham MD, Issen KA, Holcomb DJ (2013) Response of Castlegate sandstone to true triaxial states of stress. J Geophys Res 118:536–552

    Article  Google Scholar 

  • ISO 286-1-2010 (2010) Geometrical product specifications (GPS)—ISO code system for tolerances on linear sizes—part 1: basis of tolerances, deviations and fits

  • Kawamoto T, Tomita K, Akimoto K (1970) Characteristics of deformation of rock-like materials under triaxial compression. In: Proceedings of the 2nd congress of the international society of rock mechanics, Beograd, vol 1, 2–2, pp 287–293

  • King MS, Chaudhry NA, Shakeel A (1995) Experimental ultrasonic velocities and permeability for sandstones with aligned cracks. Int J Rock Mech Min Sci 32:155–163. https://doi.org/10.1016/0148-9062(94)00033-Y

    Article  Google Scholar 

  • Kupfer H (1972) Das verhalten des betons unter mehrachsiger kurzzeitbelastung unter besonderer berücksichtigung der zweiachsigen beanspruchung. Zeitschrift Für Chemie 20(3):111–112

    Google Scholar 

  • Kwasniewski M, Takahashi M, Li X (2003) Volume changes in sandstone under true triaxial compression conditions. In: Technology roadmap for rock mechanics (proceedings of the 10th ISRM congress, Sandton, September 8–12, 2003), vol 1, pp 683–688, The South Africa Institute of Mining and Metallurgy, Johannesburg

  • Labuz JF, Bridell JM (1993) Reducing frictional constraint in compression testing through lubrication. Int J Rock Mech Min Sci 30:451–455. https://doi.org/10.1016/0148-9062(93)91726-Y

    Article  Google Scholar 

  • Labuz J, Dai S-T, Papamichos E (1996) Plane-strain compression of rock-like materials. Int J Rock Mech Min Sci Geomech Abstr 33:573–584

    Article  Google Scholar 

  • Labuz JF, Zeng F, Makhnenko RY, Li Y (2018) Brittle failure of rock: a review and general linear criterion. J Struct Geol 112:7–28. https://doi.org/10.1016/j.jsg.2018.04.007

    Article  Google Scholar 

  • Lade PV (1993) Rock strength criteria: the theories and the evidence. In: Hudson J, Brown ET (eds) Comprehensive rock engineering. Elsevier Inc, London, pp 225–284

    Google Scholar 

  • Lee H, Haimson B (2011) True triaxial strength, deformability, and brittle failure of granodiorite from the San Andreas Fault Observatory at depth. Int J Rock Mech Min Sci 48:1199–1207

    Article  Google Scholar 

  • Li XC, Shi L, Bai B, Li Q, Xu D, Feng XT (2012) True-triaxial testing techniques for rocks - state of the art and future perspective. In: Kwasniewski M, Li X, Takahashi M (eds) True triaxial testing of rocks. CRC Press, Boca Raton, pp 3–18

    Google Scholar 

  • Liu TCY (1972) Stress–strain response and fracture of concrete in uniaxial and biaxial compression. ACI J 69:291–295

    Google Scholar 

  • Ma XD, Haimson B (2016) Failure characteristics of two porous sandstones subjected to true triaxial stresses. J Geophys Res Solid Earth 121(9):6477–6498. https://doi.org/10.1002/2016JB012979

    Article  Google Scholar 

  • Ma XD, Rudnicki JW, Haimson B (2017a) Failure characteristics of two porous sandstones subjected to true triaxial stresses: applied through a novel loading path. J Geophys Res Solid Earth 122(4):2525–2540

    Article  Google Scholar 

  • Ma XD, Rudnicki J, Haimson B (2017b) The application of a modified Lade-Duncan–Matsuoka-Nakai failure criterion to two porous sandstones. Int J Rock Mech Min Sci 92:9–18. https://doi.org/10.1016/IJRMMS.2016.12.004

    Article  Google Scholar 

  • Makhnenko R, Labuz J (2014) Plane strain testing with passive restraint. Rock Mech Rock Eng 47:2021–2029

    Article  Google Scholar 

  • Meyer JP, Labuz J (2013) Linear failure criteria with three principal stresses. Int J Rock Mech Min Sci 60:180–187. https://doi.org/10.1016/j.ijrmms.2012.12.040

    Article  Google Scholar 

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76:1255–1269. https://doi.org/10.1029/JB076i005p01255

    Article  Google Scholar 

  • Murrell SAF (1963) A criterion for brittle fracture of rocks and concrete under triaxial stress and the effect of pore pressure on the criterion. In: Fairhurst C (ed) Rock mechanics: proceedings of the fifth rock mechanics symposium. Pergamon Press, Oxford, pp 563–577

    Google Scholar 

  • Nasseri MHB, Goodfellow SD, Lombos L, Young RP (2014) 3-D transport and acoustic properties of Fontainebleau sandstone during true-triaxial deformation experiments. Int J Rock Mech Min Sci 69:1–18

    Article  Google Scholar 

  • Oku H, Haimson B, Song S-R (2007) True triaxial strength and deformability of the siltstone overlying the Chelungpu fault (Chi-Chi earthquake), Taiwan. Geophys Res Lett 34:L09306. https://doi.org/10.1029/2007GL029601

    Article  Google Scholar 

  • Shi L, Li X, Bai B, Li Q, Feng XT (2012) Numerical analysis of loading boundary effects in Mogi-type true triaxial tests. In: Kwaśniewski M, Li X, Takahashi M (eds) True triaxial testing of rocks. CRC Press, Boca Raton, pp 19–33

    Google Scholar 

  • Shi L, Li X, Bai B, Wang A, Zeng Z, He H (2017) A Mogi-type true triaxial testing apparatus for rocks with two moveable frames in horizontal layout for providing orthogonal loads. Geotech Test J 40:542–558. https://doi.org/10.1520/GTJ20160242

    Article  Google Scholar 

  • Takahashi M, Koide H (1989) Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. In: Maury V, Fourmaintraux D (eds) Rock at great depth, vol 1. Balkema, Rotterdam, pp 19–26

    Google Scholar 

  • von Karman T (1911) Festigkeitsversuche unter allseitigem Druck. Ztg d. Vereins Deutscher lngenieure, Jg. 55

  • Wawersik WR, Carlson LW, Holcomb DJ, Williams RJ (1997) New method for true-triaxial rock testing. Int J Rock Mech Min 34:330.e1–330.e14. https://doi.org/10.1016/S1365-1609(97)00049-X

    Google Scholar 

  • You M (2009) True-triaxial strength criteria for rock. Int J Rock Mech Min 46:115–127

    Article  Google Scholar 

  • Young RP, Nasseri MHB, Lombos L (2013) Imaging the effect of the intermediate principal stress on strength, deformation and transport properties of rock using seismic methods. In: Kwaśniewski M, Li X, Takahashi M (eds) True triaxial testing of rocks. Taylor & Francis, London, pp 167–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-Ting Feng.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Please send any written comments on this ISRM Suggested Method to Prof. Resat Ulusay, President of the ISRM Commission on Testing Methods, Hacettepe University, Department of Geological Engineering, 06800 Beytepe, Ankara, Turkey.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, XT., Haimson, B., Li, X. et al. ISRM Suggested Method: Determining Deformation and Failure Characteristics of Rocks Subjected to True Triaxial Compression. Rock Mech Rock Eng 52, 2011–2020 (2019). https://doi.org/10.1007/s00603-019-01782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01782-z

Keywords

Navigation