Skip to main content
Log in

Analytical Solution for Deep Circular Tunnels in Rock with Consideration of Disturbed zone, 3D Strength and Large Strain

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new analytical solution for deep circular tunnels in rock with consideration of disturbed zone, 3D strength and large strain. The rock is assumed to be elastic–brittle–plastic and governed by a 3D Hoek–Brown yield criterion. To take the large displacement around a tunnel into account, the large-strain theory is adopted to determine the displacement of rock in the plastic zone. Based on the equilibrium equation, constitutive law and large-strain theory, the governing equations for the stresses and radial displacement around the tunnel were derived and solved by using MATLAB. The proposed solution was validated by using it to analyze a tunnel and comparing the results with those from numerical analysis using a finite difference code. Finally, extensive parametric studies were performed on tunnels in both poor-quality and good-quality rock masses with respect to stresses and radial displacement. The results indicate that the disturbed zone and the flow rule both have significant effects on the stress and displacement distributions around the tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alejano LR, Alonso E, Dono AR, Feranndez-Man G (2009) Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behavior. Tunn Undergr Space Technol 24:689–705

    Article  Google Scholar 

  • Alonso ELR, Varas Alejano F, Fdez-Manin G, Carranza-Torres C (2003) Ground response curves for rock masses exhibiting strain-softening behavior. Int J Numer Anal Meth Geomech 27:1153–1185

    Article  Google Scholar 

  • Brown ET, Bray JW, Ladanyi B, Hoek E (1983) Ground response curves for rock tunnels. J Geotech Eng 109(1):15–39

    Article  Google Scholar 

  • Carranza-Torres C (2004) Elasto-plastic solution of tunnel problems using the generalized form of the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 41(3):480–481

    Article  Google Scholar 

  • Carranza-Torres C, Fairhurst C (1999) The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 36(5):777–809

    Article  Google Scholar 

  • Chadwick P (1959) The quasi-static expansion of a spherical cavity in metals and ideal soils. Q J Mech Appl Mech 12(1):52–71

    Article  Google Scholar 

  • Chen H, Zhu H, and Zhang L (2020) Further modification of a generalized three-dimensional Hoek-Brown criterion. Manuscript submitted for publication

  • Detournay E (1986) Elastoplastic model for a deep tunnel for a rock with variable dilatancy. Rock Mech Rock Eng 19(2):99–108

    Article  Google Scholar 

  • Florence AL, Schwer LE (1978) Axisymmetric solution of a Mohr-Coulomb medium around a circular hole. Int J Numer Anal Method Geomech 2(4):367–379

    Article  Google Scholar 

  • Hedayat A, Jacob W (2019) The elasto-plastic response of deep tunnels with damaged zone and gravity effects. Rock Mech Rock Eng 52:5123–5135

    Article  Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown failure criterion – 2002 edition. In: Hammah R et al (eds) Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunneling Association of Canada, Conference: NARMS-TAC 2002. Mining Innovation and Tech., Toronto, pp 267–273

  • Kennedy TC, Lindberg HE (1978) Tunnel closure for nonlinear Mohr-Coulomb functions. J Eng Mech Div ASCE 104(6):1313–1326

    Article  Google Scholar 

  • Lubliner J (1990) Plasticity theory. Macmillan, New York

    Google Scholar 

  • Mair R, Taylor R (1993) Predictions of clay behaviour around tunnels using plasticity solutions. In: Proceedings of the wroth memorial symposium, pp 449–462

  • Park KH, Kim YJ (2006) Analytical solution for a circular opening in an elastic-plastic rock. Int J Rock Mech Min Sci 43(4):616–622

    Article  Google Scholar 

  • Park KH (2014) Large strain similarity solution for a spherical or circular opening excavated in elastic-perfectly plastic media. Int J Numer Anal Method Geomech 39(7):724–737

    Article  Google Scholar 

  • Sharan SK (2003) Elastic–Brittle–Plastic analysis of circular openings in Hoek–Brown media. Int J Rock Mech Min Sci 40(6):817–824

    Article  Google Scholar 

  • Sharan SK (2005) Exact and approximate solutions for displacements around circular openings in Elastic–Brittle–Plastic Hoek–Brown Rock. Int J Rock Mech Min Sci 42(4):542–549

    Article  Google Scholar 

  • Sharan SK (2008) Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek–Brown Rock. Int J Rock Mech Min Sci 45(1):78–85

    Article  Google Scholar 

  • Singh A, Rao KS, Ayothiraman R (2019) An analytical solution to wellbore stability using Mogi–Coulomb failure criterion. J Rock Mech Geotech Eng 11(6):1211–1230

    Article  Google Scholar 

  • Wang YL (1996) Ground response of circular tunnel in poorly consolidated rock. J Geotech Eng 122(9):703–708

    Article  Google Scholar 

  • Wang SL, Wu ZJ, Guo MW, Ge XR (2012) Theoretical solutions of a circular tunnel with the influence of axial in situ stress in elastic-brittle-plastic rock. Tunn Undergr Space Technol 30(7):155–168. https://doi.org/10.1016/j.tust.2012.02.016

    Article  Google Scholar 

  • Yu HS, Houlsby GT (1995) A large strain analytical solution for cavity contraction in dilatant soils. Int J Numer Anal Methods Geomech 19:793–811

    Article  Google Scholar 

  • Yu HS, Rowe RK (1999) Plasticity solutions for soil behavior around contracting cavities and tunnels. Int J Numer Anal Methods Geomech 23(12):1245–1279

    Article  Google Scholar 

  • Yu HS (2000) Cavity expansion methods in geomechanics. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Zhang L (2008) A generalized three-dimensional Hoek-Brown strength criterion. Rock Mech Rock Eng 41(6):893–915

    Article  Google Scholar 

  • Zhang L, Zhu H (2007) Three-dimensional Hoek-Brown strength criterion for rocks. J Geotech Geoenvir Eng ASCE 133(9):1128–1135

    Article  Google Scholar 

  • Zhang Q, Wang HY, Jiang YJ, Lu MM, Jiang BS (2019) A numerical large strain solution for circular tunnels excavated in strain-softening rock masses. Comput Geotech 114:103142

    Article  Google Scholar 

  • Zou JF, Li SS, Xu Y, Dan HC, Zhao LH (2016) Theoretical solutions for a circular opening in an elastic–brittle–plastic rock mass incorporating the out-of-plane stress and seepage force. Ksce J Civ Eng 20(2):687–701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Derivatives of Yield Function and Potential Function

For the consistency condition, Eq. (21), the derivatives in the three directions can be given as

$$\frac{\partial f}{\partial {\stackrel{\sim }{\sigma }}_{i}}=\frac{\partial f}{\partial {\stackrel{\sim }{I}}_{1}^{*}}+\frac{\partial f}{\partial {\stackrel{\sim }{I}}_{2}^{*}}\left({\stackrel{\sim }{I}}_{1}^{*}-{\stackrel{\sim }{\sigma }}_{i}\right)+\frac{\partial f}{\partial {\stackrel{\sim }{I}}_{3}^{*}}\frac{{\stackrel{\sim }{I}}_{3}^{*}}{{\stackrel{\sim }{\sigma }}_{i}};\quad i=r,\theta ,x$$
(30)

where

$$\frac{{\partial f}}{{\partial \tilde{I}_{1}^{*} }} = \frac{{m_{b} \tilde{I}_{1}^{*} }}{{2\sqrt {\tilde{I}_{1}^{{*2}} - 3v_{2}^{*} } }} - \frac{{m_{b} \left( {\tilde{I}_{1}^{{*3}} \tilde{I}_{2}^{{*2}} - 14\tilde{I}_{1}^{{*2}} \tilde{I}_{2}^{*} \tilde{I}_{3}^{*} + 9\tilde{I}_{1}^{*} \tilde{I}_{3}^{{*2}} + 12\tilde{I}_{2}^{{*2}} \tilde{I}_{3}^{*} } \right)}}{{4\left( {\tilde{I}_{1}^{*} \tilde{I}_{2}^{*} - 9\tilde{I}_{3}^{*} } \right)^{2} \tilde{\sigma }_{m}^{*} }} + \frac{{\tilde{I}_{1}^{*} }}{{a\left( {\tilde{I}_{1}^{{*2}} - 3\tilde{I}_{2}^{*} } \right)^{{1 - \frac{1}{{ {2a}}}}} }}$$
(31)
$$\frac{\partial f}{\partial {\stackrel{\sim }{I}}_{2}^{*}}=-\frac{3{m}_{b}}{4\sqrt{{\stackrel{\sim }{I}}_{1}^{*2}-3{\stackrel{\sim }{I}}_{2}^{*}}}+\frac{{m}_{b}\left(8{\stackrel{\sim }{I}}_{1}^{*3}{\stackrel{\sim }{I}}_{3}^{*}+3{\stackrel{\sim }{I}}_{1}^{*2}{\stackrel{\sim }{I}}_{2}^{*2}-54{\stackrel{\sim }{I}}_{1}^{*}{\stackrel{\sim }{I}}_{2}^{*}{\stackrel{\sim }{I}}_{3}^{*}+27{\stackrel{\sim }{I}}_{3}^{*2}\right)}{8{\left({\stackrel{\sim }{I}}_{1}^{*}{\stackrel{\sim }{I}}_{2}^{*}-9{\stackrel{\sim }{I}}_{3}^{*}\right)}^{2}{\stackrel{\sim }{\sigma }}_{m}^{*}} +\frac{3}{2a{\left({\stackrel{\sim }{I}}_{1}^{*2}-3{\stackrel{\sim }{I}}_{2}^{*}\right)}^{1-\frac{1}{2a}}}$$
(32)
$$\frac{\partial f}{\partial {\stackrel{\sim }{I}}_{3}^{*}}=\frac{2{m}_{b}{\stackrel{\sim }{I}}_{1}^{*}{\stackrel{\sim }{I}}_{2}^{*}\left(-{\stackrel{\sim }{I}}_{1}^{*2}+3{\stackrel{\sim }{I}}_{2}^{*}\right)}{2{\left({\stackrel{\sim }{I}}_{1}^{*}{\stackrel{\sim }{I}}_{2}^{*}-9{\stackrel{\sim }{I}}_{3}^{*}\right)}^{2}{\stackrel{\sim }{\sigma }}_{m}^{*}}$$
(33)
$${\stackrel{\sim }{\sigma }}_{m}^{*}=\sqrt{\frac{\left({\stackrel{\sim }{I}}_{1}^{*}{\stackrel{\sim }{I}}_{2}^{*}-{\stackrel{\sim }{I}}_{3}^{*}\right)\left({\stackrel{\sim }{I}}_{1}^{*2}-3{\stackrel{\sim }{I}}_{2}^{*}\right)}{{\stackrel{\sim }{I}}_{1}^{*}{\stackrel{\sim }{I}}_{2}^{*}-{9\stackrel{\sim }{I}}_{3}^{*}}}$$
(34)

According to the flow rule, the plastic strain rate in the three directions can be given as

$${\dot{\varepsilon }}_{r}^{p}=\lambda \frac{\partial g}{\partial {\sigma }_{r}}=\lambda \frac{\partial g}{\partial {\stackrel{\sim }{\sigma }}_{r}}\frac{\partial {\stackrel{\sim }{\sigma }}_{r}}{\partial {\sigma }_{r}}=\lambda \frac{1}{{\sigma }_{c}}\frac{\partial g}{\partial {\stackrel{\sim }{\sigma }}_{r}}$$
(35)
$${\dot{\varepsilon }}_{\theta }^{p}=\lambda \frac{\partial g}{\partial {\sigma }_{\theta }}=\lambda \frac{\partial g}{\partial {\stackrel{\sim }{\sigma }}_{\theta }}\frac{\partial {\stackrel{\sim }{\sigma }}_{\theta }}{\partial {\sigma }_{\theta }}=\lambda \frac{1}{{\sigma }_{c}}\frac{\partial g}{\partial {\stackrel{\sim }{\sigma }}_{\theta }}$$
(36)
$${\dot{\varepsilon }}_{x}^{p}=\lambda \frac{\partial g}{\partial {\sigma }_{x}}=\lambda \frac{\partial g}{\partial {\stackrel{\sim }{\sigma }}_{x}}\frac{\partial {\stackrel{\sim }{\sigma }}_{x}}{\partial {\sigma }_{x}}=\lambda \frac{1}{{\sigma }_{c}}\frac{\partial g}{\partial {\stackrel{\sim }{\sigma }}_{x}}$$
(37)

For associated flow rule

$$\frac{\partial g}{\partial {\stackrel{\sim }{\sigma }}_{i}}=\frac{\partial f}{\partial {\stackrel{\sim }{\sigma }}_{i}};\quad i=r,\theta ,x$$
(38)

while for unassociated flow rule with a dilation angle, one has

$$\frac{\partial g/\partial {\stackrel{\sim }{\sigma }}_{r}}{\partial g/\partial {\stackrel{\sim }{\sigma }}_{\theta }}=-\frac{1-\mathrm{sin}\varPsi }{1+\mathrm{sin}\varPsi }$$
(39)

where \(\varPsi\) is the dilation angle.

1.2 Equations for Iterative Algorithms

For the cylindrical cavity contraction problem, the yield function in terms of \({\sigma }_{rp}\) can be simplified as

$$f\left({\sigma }_{rp}^{\prime}\right)=\frac{1}{{\sigma }_{c}^{\left(1/a-1\right)}}{\left[\sqrt{3}\left({\sigma }_{0}^{\prime}-{\sigma }_{rp}^{\prime}\right)\right]}^{1/a}+\frac{\sqrt{3}{m}_{b}}{2}\left({\sigma }_{0}^{\prime}-{\sigma }_{rp}^{\prime}\right)-\frac{{m}_{b}}{2}\sqrt{4{\sigma }_{0}^{2}-{\left({\sigma }_{rp}^{\prime}-{\sigma }_{0}^{\prime}\right)}^{2}}$$
(40)

The corresponding derivation of yield function \(f\) with respect to \({\sigma }_{rp}^{\prime}\) is

$${f}^{\prime}\left({\sigma }_{rp}^{\prime}\right)=-\frac{{3}^{\frac{1}{\left(2a\right)}}}{a{\sigma }_{c}^{\left(1/a-1\right)}}{\left({\sigma }_{0}^{\prime}-{\sigma }_{rp}^{\prime}\right)}^{1/a-1}-\frac{\sqrt{3}{m}_{b}}{2}+\frac{{m}_{b}}{2}\frac{{\sigma }_{rp}^{\prime}-{\sigma }_{0}^{\prime}}{\sqrt{4{\sigma }_{0}^{\prime2}-{\left({\sigma }_{rp}^{\prime}-{\sigma }_{0}^{\prime}\right)}^{2}}}$$
(41)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhu, H. & Zhang, L. Analytical Solution for Deep Circular Tunnels in Rock with Consideration of Disturbed zone, 3D Strength and Large Strain. Rock Mech Rock Eng 54, 1391–1410 (2021). https://doi.org/10.1007/s00603-020-02339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02339-1

Keywords

Navigation