Skip to main content
Log in

Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

CdS quantum dots (QDs) have been prepared and modified with chitosan. Based on the quenching of fluorescence signals of the functionalized CdS QDs at 531 nm wavelength and enhancement of signals the 400–700 nm wavelength range by Cu2+ at pH 4.2, a simple, rapid and specific method for Cu2+ determination is presented. Under optimum conditions, the relative fluorescence intensity of CdS QDs is linearly proportional to copper concentration from 8.0 nmol L−1 to 3.0 μmol L−1 with a detection limit of 1.2 nmol L−1. The mechanism can be explained in terms of strong binding of Cu2+ onto the surface of CdS, resulting in a chemical displacement of Cd2+ ions and the formation of CuS on the surface of the QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706

    Article  CAS  Google Scholar 

  2. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183

    Article  CAS  Google Scholar 

  3. Stinaff EA, Scheibner M, Bracker AS et al (2006) Optical signatures of coupled dots. Science 311:636

    Article  CAS  Google Scholar 

  4. Clapp AR, Medintz IL, Uyeda HT (2005) Quantum dot-based multiplexed fluorescence resonance energy transfer. J Am Chem Soc 127:18212

    Article  CAS  Google Scholar 

  5. Goldman ER, Balighian ED, Mattoussi H et al (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124:6378

    Article  CAS  Google Scholar 

  6. Larson DR, Zipfel WR, Williams RM et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in Vivo. Science 300:1434

    Article  CAS  Google Scholar 

  7. Giemans BNG, Adams SR, Ellisman MH et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217

    Article  Google Scholar 

  8. Chen YF, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132

    Article  CAS  Google Scholar 

  9. Gatas-Asfura KM, Leblanc RM (2003) Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver. Chem Commun (21):2684

  10. Chen JL, Zhu CQ (2005) Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta 546:147

    Article  CAS  Google Scholar 

  11. Li HB, Zhang Y, Wang XQ, Gao ZN (2008) A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots. Microchim Acta 160:119

    Article  CAS  Google Scholar 

  12. Wu HM, Liang JG, Han HY (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161:81

    Article  CAS  Google Scholar 

  13. Lai SJ, Chang XJ, Mao J et al (2007) Determination of silver ion with cadmium sulfide quantum dots modified by bismuthiol II as fluorescence probe. Ann Chim- Rome 97:109

    Article  CAS  Google Scholar 

  14. Yi H, Wu LQ, Bentley WE et al (2005) Biofabrication with chitosan, biomacromolecules. Biomacromolecules 6:2881

    Article  CAS  Google Scholar 

  15. Krajewska B (2001) Diffusion of metal ions through gel chitosan membranes. React Funct Polym 47:37

    Article  CAS  Google Scholar 

  16. Li Z, Du YM, Zhang ZL et al (2003) Preparation and characterization of CdS quantum dots chitosan biocomposite. React Funct Polym 55:35

    Article  CAS  Google Scholar 

  17. Demas JN, Crosby GA (1971) The measurement of photoluminescence quantum yields. J Phys Chem A 75:991

    Google Scholar 

  18. Yu WW, Qu LH, Guo WZ et al (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854

    Article  CAS  Google Scholar 

  19. Kolhe P, Kannan RM (2003) Improvement inductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interaction. Biomacromolecules 4:173

    Article  CAS  Google Scholar 

  20. Cao YC, Wang JH (2004) One-pot synthesis of high-quality zinc-blend CdS nanocrystals. J Am Chem Soc 126:14336

    Article  CAS  Google Scholar 

  21. Sarov AV, Chrysochoos J (1997) Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper(II) ions. Langmuir 13:3142

    Article  Google Scholar 

  22. Gao M, Kirstein S, Mhwald H et al (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem 102:8360

    CAS  Google Scholar 

  23. Florence TM (1982) The speciation of trace elements in waters. Talanta 29:345

    Article  CAS  Google Scholar 

  24. Myung N, Bae Y, Bard AJ (2003) Enhancement of the photoluminescence of CdSe nanocrystals dispersed in CHCl3 by oxygen passivation of surface states. Nano Lett 3:747

    Article  CAS  Google Scholar 

  25. Liang JG, Ai XP, He ZK et al (2004) Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst 129:619

    Article  CAS  Google Scholar 

  26. Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. Trac- Trend Anal Chem 25:207

    Article  Google Scholar 

  27. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953

    Article  CAS  Google Scholar 

  28. Xie HY, Liang JG, Zhang ZL, Liu Y (2004) Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochimica Acta A 60:2527

    Article  Google Scholar 

  29. Cao QE, Wang KT, Hu ZD et al (1998) Syntheses of three new derivatives of 8-aminoquinoline and its applications for fluorimetric determination of copper(II). Talanta 47:921

    Article  CAS  Google Scholar 

  30. Kawakubo S, Kato H, Watsuki MI (1994) Catalytic spectrofluorimetric determination of copper using aerial oxidation of ascorbic acid in the presence of o-phenylenediamine. Analyst 119:2119

    Article  CAS  Google Scholar 

  31. Torsten M, Dorota W, Tobias W (2001) Fluorimetric determination of copper(II) in aqueous solution using lucifer yellow CH as selective metal reagent. Fresenius J Anal Chem 371:44

    Article  Google Scholar 

  32. Chen B, Zhong P (2005) A new determining method of copper(II) ions at ng ml−1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem 381:986

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the personal introducement program of the Chongqing Three Gorges University (2007-SXX-YRC-006), Chongqing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoujun Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, S., Chang, X. & Fu, C. Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta 165, 39–44 (2009). https://doi.org/10.1007/s00604-008-0094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0094-2

Keywords

Navigation