Skip to main content

Advertisement

Log in

Electrochemical sensors based on metal and semiconductor nanoparticles

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal and semiconductor nanoparticles exhibit unique optical, electrical, thermal and catalytic properties. Therefore, they have attracted considerable interest and have been employed for construction of various electrochemical sensors. This minireview gives a general view of recent advances in electrochemical sensor development based on metal and semiconductor nanoparticles covering genosensors, protein and enzyme-based sensors, gas sensors and sensor for other organic and inorganic substances. Different assay strategies based on metal and semiconductor nanoparticles for biosensor and bioelectronic applications are presented, including electrochemical, electrical, and magnetic signal transduction techniques. Electrochemical transduction principles provide signal changes in conductance, charge, potential and current. We have paid much attention to the potential-based and current-based sensors herein. Lastly, a brief introduction is given into advances concerning the role of nanoparticles, quantum dots and nanowires for nanomedicine, such as drug delivery and discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arben M (2007) Nanobiomaterials in electroanalysis. Electroanalysis 19:739

    Google Scholar 

  2. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19

    CAS  Google Scholar 

  3. Schmid G, Chi LF (1998) Metal clusters and colloids. Adv Mater 10:515

    CAS  Google Scholar 

  4. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933

    CAS  Google Scholar 

  5. Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93:2693

    CAS  Google Scholar 

  6. Burda C, Chen XB, Narayanan R, Ei-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025

    CAS  Google Scholar 

  7. Hernández-Santos D, González-García MB, García AC (2002) Metal-nanoparticles based electroanalysis. Electroanalysis 14:1225

    Google Scholar 

  8. Lindy M (2006) Biosensors and bioelectrochemistry. Curr Opin Chem Biol 10:177

    Google Scholar 

  9. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18

    CAS  Google Scholar 

  10. Shipway AN, Willner I (2001) Nanoparticles as structural and functional units in surface-confined architectures. Chem Commun (20):2035–2045

  11. Shipway AN, Lahav M, Willner I (2000) Adv Mater 12:993

    CAS  Google Scholar 

  12. Cheng WL, Dong SJ, Wang EK (2002) Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Anal Chem 74:3599

    CAS  Google Scholar 

  13. Paleèek E (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188:656

    Google Scholar 

  14. Wu KB, Fei JJ, Bai W, Hu SS (2003) Electrochemistry of DNA, guanine and adenine at nanostructured film modified electrode. Anal Bioanal Chem 376:205

    CAS  Google Scholar 

  15. Li D, Yan YM, Wieckowska A, Willner I (2007) Amplified electrochemical detection of DNA through the aggregation of Au nanoparticles on electrodes and the incorporation of methylene blue into the DNA-crosslinked structure. Chem Commun 34:3544

    Google Scholar 

  16. Corgier BP, Li F, Blum LJ, Marquette CA (2007) On-chip chemiluminescent signal enhancement using nanostructured gold-modified carbon microarrays. Langmuir 23:8619

    CAS  Google Scholar 

  17. Cai H, Xu C, He PG, Fang YZ (2001) Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 510:78

    CAS  Google Scholar 

  18. Dequaire M, Degrand C, Limoges B (2000) An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem 72:5521

    CAS  Google Scholar 

  19. Wang J, Polsky R, Xu D (2001) Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir 17:5739

    CAS  Google Scholar 

  20. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 298:1757

    Google Scholar 

  21. Wang J, Polsky R, Merkoci A, Turner K (2003) “Electroactive beads” for ultrasensitive DNA detection. Langmuir 19:989

    CAS  Google Scholar 

  22. Kundu S, Maheshwari V, Saraf RF (2008) Photolytic metallization of Au nanoclusters and electrically conducting micrometer long nanostructures on a DNA scaffold. Langmuir 24:551

    CAS  Google Scholar 

  23. Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 11:2888

    Google Scholar 

  24. Karadeniz H, Erdem A, Caliskan A, Pereira CM, Pereira EM, Ribeiro JA (2007) Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes. Electrochem Commun 9:2167

    CAS  Google Scholar 

  25. Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575

    CAS  Google Scholar 

  26. Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503

    CAS  Google Scholar 

  27. Merkoçi A, Aldavert M, Marín S, Alegret S (2005) New materials for electrochemical sensing V: nanoparticles for DNA labeling. Trends Anal Chem 24:341

    Google Scholar 

  28. Authier L, Grossiord C, Brossier P, Limoges B (2001) Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 73:4450

    CAS  Google Scholar 

  29. Wang J, Xu D, Kawde A-N, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576

    CAS  Google Scholar 

  30. Wang J, Xu D, Polsky R (2002) Magnetically-induced solid-state electrochemical detection of DNA hybridization. J Am Chem Soc 124:4208

    CAS  Google Scholar 

  31. Castañeda MT, Alegret S, Merkoci A (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis 19:743

    Google Scholar 

  32. Murphy CJ (2002) Optical sensing with quantum dots. Anal Chem 74:520A

    CAS  Google Scholar 

  33. Xu Y, Cai H, He PG, Fang YZ (2004) Probing DNA hybridization by impedance measurement based on CdS-oligonucleotide nanoconjugates. Electroanalysis 16:150

    CAS  Google Scholar 

  34. Wang J, Liu G, Jan MR, Zhu Q (2003) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5:1000

    CAS  Google Scholar 

  35. Wang J, Liu G, Merkoçi A (2003) Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer. Anal Chim Acta 482:149

    CAS  Google Scholar 

  36. Wang J, Liu G, Merkoçi A (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Commun 4:722

    CAS  Google Scholar 

  37. Wang J, Liu G, Merkoçi A (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 125:3214

    CAS  Google Scholar 

  38. Cai H, Zhu NN, Fang YZ (2003) Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosens Bioelectron 18:1311

    CAS  Google Scholar 

  39. Rijiravanich P, Somasundrum M, Surareungchai W (2008) Femtomolar electrochemical detection of DNA hybridization using hollow polyelectrolyte shells bearing silver nanoparticles. Anal Chem 80:3904

    CAS  Google Scholar 

  40. Wang JX, Zhu X, Tu QY, Guo Q, Zarui CS, Momand JM, Sun XZ, Zhou FM (2008) Capture of p53 by electrodes modified with consensus DNA duplexes and amplified voltammetric detection using ferrocene-capped gold nanoparticle/streptavidin conjugates. Anal Chem 80:769

    CAS  Google Scholar 

  41. Shiddiky MJA, Rahman MA, Shim YB (2007) Hydrazine-catalyzed ultrasensitive detection of DNA and proteins. Anal Chem 79:6886

    CAS  Google Scholar 

  42. Wang J, Li JH, Baca AJ, Hu JB, Zhou FM, Yan W, Pang DW (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941

    CAS  Google Scholar 

  43. Willner I, Katz E (2003) Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew Chem Int Ed 42:4576

    CAS  Google Scholar 

  44. Wang J, Kawde A, Erdem A, Salazar M (2001) Magnetic bead-based label-free electrochemical detection of DNA hybridization. Analyst 126:2020

    CAS  Google Scholar 

  45. Wang J, Kawde AN (2002) Magnetic-field stimulated DNA oxidation. Electrochem Commun 4:349

    CAS  Google Scholar 

  46. Zhu NN, Zhang AP, He PG, Fang YZ (2004) DNA hybridization at magnetic nanoparticles with electrochemical stripping detection. Electroanalysis 16:1925

    CAS  Google Scholar 

  47. Zhu XL, Han K, Li GX (2006) Magnetic nanoparticles applied in electrochemical detection of controllable DNA hybridization. Anal Chem 78:2447

    CAS  Google Scholar 

  48. Willner I, Katz E (2006) Controlling chemical reactivity at solid-solution interfaces by means of hydrophobic magnetic nanoparticles. Langmuir 22:1409

    CAS  Google Scholar 

  49. Katz E, Sheeney-Haj-Ichia L, Willner I (2002) Magneto-switchable electrocatalytic and bioelectrocatalytic transformations. Chem Eur J 8:4138

    CAS  Google Scholar 

  50. Katz E, Willner I (2005) Switching of directions of bioelectrocatalytic currents and photocurrents at electrode surfaces by using hydrophobic magnetic nanoparticles. Angew Chem Int Ed 44:4791

    CAS  Google Scholar 

  51. Katz E, Willner I (2002) Magneto-stimulated hydrodynamic control of electrocatalytic and bioelectrocatalytic processes. J Am Chem Soc 124:10290

    CAS  Google Scholar 

  52. Katz E, Willner I (2005) Enhancement of bioelectrocatalytic processes by the rotation of mediator-functionalized magnetic particles on electrode surfaces: comparison with a rotating disk electrode. Electroanalysis 17:1616

    CAS  Google Scholar 

  53. Patolsky F, Weizmann Y, Katz E, Willner I (2003) Magnetically amplified DNA assays (MADA): sensing of viral DNA and single base mismatches using nucleic acid-modified magnetic particles. Angew Chem Int Ed 42:2372

    CAS  Google Scholar 

  54. Katz E, Sheeney-Haj-Ichia L, Basnar B, Felner I, Willner I (2004) Magnetoswitchable controlled hydrophilicity/hydrophobicity of electrode surfaces using alkyl-chain-functionalized magnetic particles: application for switchable electrochemistry. Langmuir 20:9714

    CAS  Google Scholar 

  55. Katz E, Baron R, Willner I (2005) Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: controlling of diffusional and surface-confined electrochemical process. J Am Chem Soc 127:4060

    CAS  Google Scholar 

  56. Katz E, Willner I (2006) Magneto-controlled quantized electron transfer to surface-confined redox units and metal nanoparticles. Sensors 6:420

    CAS  Google Scholar 

  57. Chang T, Tsai CY, Sun CC, Uppal R, Chen CC, Lin CH, Chen PH (2006) Electrical detection of DNA using gold and magnetic nanoparticles and bio bar-code DNA between nanogap electrodes. Microelectron Eng 83:1630

    CAS  Google Scholar 

  58. Pumera M, Castaeda MT, Pividori MI, Eritja R, Merkoi A, Alegret S (2005) Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. Langmuir 21:9625

    CAS  Google Scholar 

  59. Selvaraju T, Das J, Jo K, Kwon K, Huh CH, Kim TK, Yang H (2008) Nanocatalyst-based assay using DNA-conjugated Au nanoparticles for electrochemical DNA detection. Langmuir 24:9883

    CAS  Google Scholar 

  60. Das J, Aziz MA, Yang H (2006) A nanocatalyst-based assay for proteins : DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J Am Chem Soc 128:16022

    CAS  Google Scholar 

  61. Selvaraju T, Das J, Han SW, Yang H (2008) Ultrasensitive electrochemical immunosensing using magnetic beads and gold nanocatalysts. Biosens Bioelectron 23:932

    CAS  Google Scholar 

  62. Kerman K, Saito M, Morita Y, Takamura Y, Ozsoz M, Tamiya E (2004) Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal Chem 76:1877

    CAS  Google Scholar 

  63. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547

    CAS  Google Scholar 

  64. Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75:2181

    CAS  Google Scholar 

  65. Lee TM-H, Li LL, Hsing IM (2003) Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification. Langmuir 19:4338

    CAS  Google Scholar 

  66. Wang J, Liu G, Zhu Q (2003) Indium microrod tags for electrochemical detection of DNA hybridization. Anal Chem 75:6218

    CAS  Google Scholar 

  67. Vestergaard M, Kerman K, Tamiya E (2007) An overview of label-free electrochemical protein sensors. Sensors 7:3442

    CAS  Google Scholar 

  68. Bini A, Minunni M, Tombelli S, Centi S, Mascini M (2007) Analytical performance of aptamer-based sensing for thrombin detection. Anal Chem 79:3016

    CAS  Google Scholar 

  69. Centi S, Tombelli S, Minnuni M, Mascini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79:1466

    CAS  Google Scholar 

  70. Armstrong FA (2002) In: Wilson GS (ed) Bioelectrochemistry. Wiley-VCH, Weinheim, pp 11–29

    Google Scholar 

  71. Wu J, Yan YT, Yan F, Ju HX (2008) Electric field-driven strategy for multiplexed detection of protein biomarkers using a disposable reagentless electrochemical immunosensor array. Anal Chem 80:6072

    CAS  Google Scholar 

  72. Chen XJ, Wang YY, Zhou JJ, Yan W, Li XH, Zhu JJ (2008) Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal Chem 80:2133

    CAS  Google Scholar 

  73. Lin CC, Chen LC, Huang CH, Ding SJ, Chang CC, Chang HC (2008) Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection. J Electroanal Chem 619–620:39

    Google Scholar 

  74. Zhao W, Sun SX, Xu JJ, Chen HY, Cao XJ, Guan XH (2008) Electrochemical identification of the property of peripheral nerve fiber based on a biocompatible polymer film via in situ incorporating gold nanoparticles. Anal Chem 80:3769

    CAS  Google Scholar 

  75. Liu GD, Lin YY, Wang J, Wu H, Wai CM, Lin YH (2007) Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal Chem 79:7644

    CAS  Google Scholar 

  76. Chumbimuni-Torres KY, Dai Z, Rubinova N, Xiang Y, Pretsch E, Wang J, Bakker E (2006) Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels. J Am Chem Soc 128:13676

    CAS  Google Scholar 

  77. Li JP, Gao HL (2008) A renewable potentiometric immunosensor based on Fe3O4 nanoparticles immobilized anti-IgG. Electroanalysis 20:881

    CAS  Google Scholar 

  78. Cui RJ, Pan HC, Zhu JJ, Chen HY (2007) Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal Chem 79:8494

    CAS  Google Scholar 

  79. Zhang TT, Yuan R, Chai YQ, Liu KG, Ling SJ (2008) Study on an immunosensor based on gold nanoparticles and a nano-calcium carbonate/Prussian blue modified glassy carbon electrode. Microchim Acta (in press) doi:10.1007/s00604-008-0097-z

  80. Zhang LY, Liu Y, Chen T (2008) Label-free amperometric immunosensor based on antibody immobilized on a positively charged gold nanoparticle L-cysteine-modified gold electrode. Microchim Acta 164:161–166

    Google Scholar 

  81. Tang DP, Yuan R, Chai YQ (2006) Magnetic core−shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. J Phys Chem B 110:11640

    CAS  Google Scholar 

  82. Chang TL, Tsai CY, Sun CC, Chen CC, Kuo LS, Chen PH (2007) Ultrasensitive electrical detection of protein using nanogap electrodes and nanoparticle-based DNA amplification. Biosens Bioelectron 22:3139

    CAS  Google Scholar 

  83. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505

    CAS  Google Scholar 

  84. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818

    CAS  Google Scholar 

  85. Ikebukuro K, Kiyohara C, Sode K (2004) Electrochemical detection of protein using a double aptamer sandwich. Anal Lett 37:2901

    CAS  Google Scholar 

  86. Zayats M, Huang Y, Gill R, Ma C, Willner I (2006) Label-free and reagentless aptamer-based sensors for small molecules. J Am Chem Soc 128:13666

    CAS  Google Scholar 

  87. Lai RY, Plaxco KW, Heeger AJ (2007) Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 79:229

    CAS  Google Scholar 

  88. Zhang YL, Huang Y, Jiang JH, Shen GL, Yu RQ (2007) Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. J Am Chem Soc 129:15448

    CAS  Google Scholar 

  89. Zheng J, Feng WJ, Lina L, Zhang F, Chenga GF, He PG, Fang YZ (2007) A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles. Biosens Bioelectron 23:341

    CAS  Google Scholar 

  90. Zuo XL, Song SP, Zhang J, Pan D, Wang LH, Fan CH (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129:1042

    CAS  Google Scholar 

  91. Xu DK, Xu DW, Yu XB, Liu ZH, He W, Ma ZQ (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77:5107

    CAS  Google Scholar 

  92. Polsky R, Gill R, Kaganovsky L, Willner I (2006) Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem 78:2268

    CAS  Google Scholar 

  93. Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228

    CAS  Google Scholar 

  94. Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80:707

    CAS  Google Scholar 

  95. Lu Q, Hu SS, Pang DW, He ZK (2005) Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on GCE. Chem Commun 20:2584

    Google Scholar 

  96. Willner I, Kata E, Riklin A, Kasher R (1992) Mediated electron transfer in glutathione reductase organized in self-assembled monolayers on gold electrodes. J Am Chem Soc 114:10965

    CAS  Google Scholar 

  97. Degani R, Heller A (1998) Direct electrical communication between chemically modified enzymes and metal electrodes. 2. Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase. J Am Chem Soc 110:2615

    Google Scholar 

  98. Liu HQ, Tian Y, Xia PP (2008) Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors. Langmuir 24:6359

    CAS  Google Scholar 

  99. Moghaddam AB, Ganjali MR, Dinarvand R, Razavi T, Saboury AA, Moosavi-Movahedi AA, Norouzi P (2008) Direct electrochemistry of cytochrome c on electrodeposited nickel oxide nanoparticles. J Electroanal Chem 614:83

    CAS  Google Scholar 

  100. Loftus AF, Reighard KP, Kapourales SA, Leopold MC (2008) Monolayer-protected nanoparticle film assemblies as platforms for controlling interfacial and adsorption properties in protein monolayer electrochemistry. J Am Chem Soc 130:1649

    CAS  Google Scholar 

  101. Xiang CL, Zou YJ, Sun LX, Xu F (2008) Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem Commun 10:38

    CAS  Google Scholar 

  102. Willner B, Katz E, Willner I (2006) Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotech 17:589

    CAS  Google Scholar 

  103. Zong SZ, Cao Y, Zhou YM, Ju HX (2006) Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. Langmuir 22:8915

    CAS  Google Scholar 

  104. Brown KR, Fox AP, Natan MJ (1996) Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J Am Chem Soc 118:1154

    CAS  Google Scholar 

  105. Lioubashevski O, Chegel VI, Patolsky F, Katz E, Willner I (2004) Enzyme-catalyzed bio-pumping of electrons into Au-nanoparticles: a surface plasmon resonance and electrochemical study. J Am Chem Soc 126:7133

    CAS  Google Scholar 

  106. Xiao Y, Patolsky F, Kataz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877

    CAS  Google Scholar 

  107. Hirsch R, Katz E, Willner I (2000) Magneto-switchable bioelectrocatalysis. J Am Chem Soc 122:12053

    CAS  Google Scholar 

  108. Jiménez J, Sheparovych R, Pita M, García AN, Dominguez E, Minko S, Katz E (2008) Magneto-induced self-assembling of conductive nanowires for biosensor applications. J Phys Chem C 112:7337

    Google Scholar 

  109. Riskin M, Basnar B, Huang Y, Willner I (2007) Magnetoswitchable charge transport and bioelectrocatalysis using maghemite–Au core–shell nanoparticle/polyaniline composites. Adv Mater 19:2691

    CAS  Google Scholar 

  110. Zhun L, Wang J, Xie DH, Chen G (2008) Polyaniline-coated Fe3O4 nanoparticle–carbon-nanotube composite and its application in electrochemical biosensing. Small 4:462

    Google Scholar 

  111. Qiu JD, Peng HP, Liang RP (2007) Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochem Commun 9:2734

    CAS  Google Scholar 

  112. Wang SF, Tan YM, Zhao DM, Liu GD (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 23:1781

    CAS  Google Scholar 

  113. Franois M, Mlanie B, Souad AM, Damien M, Benot L (2007) Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis. Anal Chem 79:187

    Google Scholar 

  114. Zhou Y, Li Z, Hu N, Zeng Y, Rusling JF (2002) Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemical and catalytic activity. Langmuir 18:8573

    CAS  Google Scholar 

  115. Li Z, Hu N (2003) Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles. J Electroanal Chem 558:155

    CAS  Google Scholar 

  116. He P, Hu N, Rusling JF (2004) Driving forces for layer-by-layer self-assembly of films of SiO2 nanoparticles and heme proteins. Langmuir 20:722

    CAS  Google Scholar 

  117. Lvov Y, Munge B, Giraldo O, Ichinose I, Suib S, Rusling JF (2000) Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption. Langmuir 16:8850

    CAS  Google Scholar 

  118. Mckenzie KJ, Marken F (2003) Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO2 phytate. Langmuir 19:4327

    CAS  Google Scholar 

  119. Liu HY, Rusling JF, Hu NF (2004) Electroactive core–shell nanocluster films of heme proteins, polyelectrolytes, and silica nanoparticles. Langmuir 20:10700

    CAS  Google Scholar 

  120. Wang YH, Gu HY (2008) Hemoglobin co-immobilized with silversilver oxide nanoparticles on a bare silver electrode for hydrogen peroxide electroanalysis. Microchim Acta 164:41–47

    Google Scholar 

  121. Lai GS, Zhang HL, Han DY (2008) Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase by carbon-coated iron nanoparticles in combination with chitosan and cross-linking of glutaraldehyde. Microchim Acta (in press) doi:10.1007/s00604-008-0114-2

  122. Lai GS, Zhang HL, Hana DY (2008) A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sensor Actuators B 129:497

    Google Scholar 

  123. Xu Q, Bian XJ, Li LL, Hu XY, Sun M, Chen D, Wang Y (2008) Myoglobin immobilized on Fe3O4@SiO2 magnetic nanoparticles: Direct electron transfer, enhanced thermostability and electroactivity. Electrochem Commun 10:995

    CAS  Google Scholar 

  124. Wang B, Li B, Deng Q, Dong S (1998) Amperometric glucose biosensor based on sol–gel organic–inorganic hybrid material. Anal Chem 70:3170

    CAS  Google Scholar 

  125. Liang RP, Qiua JD, Cai PX (2005) A novel amperometric immunosensor based on three-dimensional sol–gel network and nanoparticle self-assemble technique. Anal Chim Acta 534:223

    CAS  Google Scholar 

  126. Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol–gel network. Anal Chem 74:2217

    CAS  Google Scholar 

  127. Liu HY, Hu NF (2007) Study on direct electrochemistry of glucose oxidase stabilized by cross-linking and immobilized in silica nanoparticle films. Electroanalysis 19:884

    CAS  Google Scholar 

  128. Yang WW, Bai Y, Li YC, Sun CQ (2005) Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol–gel film. Anal Bioanal Chem 382:44

    CAS  Google Scholar 

  129. Sanz VC, Mena ML, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1

    Google Scholar 

  130. Kalimuthu P, John SA (2008) Size dependent electrocatalytic activity of gold nanoparticles immobilized onto three dimensional sol–gel network. J Electroanal Chem 617:164

    CAS  Google Scholar 

  131. Jia JB, Cao LY, Wang ZH (2008) Platinum-coated gold nanoporous film surface: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Langmuir 24:5932

    CAS  Google Scholar 

  132. Bai YH, Du Y, Xu JJ, Chen HY (2007) Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem Commun 9:2611

    CAS  Google Scholar 

  133. Safavi A, Maleki N, Tajabadi F, Farjami E (2007) High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochem Commun 9:1963

    CAS  Google Scholar 

  134. Foxx D, Kalu EE (2007) Amperometric biosensor based on thermally activated polymer-stabilized metal nanoparticles. Electrochem Commun 9:584

    CAS  Google Scholar 

  135. Wu S, Zhao HT, Ju HX, Shi CG, Zhao JW (2006) Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem Commun 8:1197

    CAS  Google Scholar 

  136. Jena BK, Raj CR (2006) Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem Eur J 12:2702

    CAS  Google Scholar 

  137. Chang G, Oyama M, Hirao K (2006) In situ chemical reductive growth of platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. J Phys Chem B 110:1860

    CAS  Google Scholar 

  138. Carralero V, Mena ML, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2006) Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles. Biosens Bioelectron 22:730

    CAS  Google Scholar 

  139. Li YF, Liu ZM, Liu YL, Yang YH, Shen GL, Yu RQ (2006) A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal Biochem 349:33

    CAS  Google Scholar 

  140. Liu YG, Feng XM, Shen JM, Zhu JJ, Hou WH (2008) Fabrication of a novel glucose biosensor based on a highly electroactive polystyrene/polyaniline/Au nanocomposite. J Phys Chem B 112:9237

    CAS  Google Scholar 

  141. Zayats M, Willner B, Willner I (2008) Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis, 20:583

    CAS  Google Scholar 

  142. Scavetta E, Stipa S, Tonelli D (2007) Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing. Electrochem Commun 9:2838

    CAS  Google Scholar 

  143. Choi HN, Han JH, Park JA, Lee JM, Lee WY (2007) Amperometric glucose biosensor based on glucose oxidase encapsulated in carbon nanotube–titania–Nafion composite film on platinized glassy carbon electrode. Electroanalysis 19:1757

    CAS  Google Scholar 

  144. Li Y, Song YY, Yang C, Xia XH (2007) Hydrogen bubble dynamic template synthesis of porous gold material for nonenzymatic electrochemical detection of glucose. Electrochem Commun 9:981

    CAS  Google Scholar 

  145. Wang Y, Wei WZ, Zeng JX, Liu XY, Zeng XD (2008) Fabrication of a copper nanoparticle/chitosan/carbonnanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim Acta 160:253

    CAS  Google Scholar 

  146. Thibault S, Aubriet H, Arnoult C, Ruch D (2008) Gold nanoparticles and a glucose oxidase based biosensor: an attempt to follow-up aging by XPS. Microchim Acta 163:211

    CAS  Google Scholar 

  147. Qiu JD, Xie HY, Liang RP (2008) Preparation of porous chitosan–carbon nanotubes film modified electrode for biosensor application. Microchim Acta 162:57

    CAS  Google Scholar 

  148. Neugebauer S, Stoica L, Guschin D, Schuhmann W (2008) Redox-amplified biosensors based on selective modification of nanopore electrode structures with enzymes entrapped within electrodeposition paints. Microchim Acta 163:33

    CAS  Google Scholar 

  149. Zhang JD, Oyama M (2007) Electrocatalytic activity of three-dimensional monolayer of 3-mercaptopropionic acid assembled on gold nanoparticle arrays. Electrochem Commun 9:459

    CAS  Google Scholar 

  150. Wang ZJ, Yuan JH, Li MY, Han DX, Zhang YJ, Shen YF, Niu L, Ivaska A (2007) Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite. J Electroanal Chem 599:121

    CAS  Google Scholar 

  151. Thiagarajan S, Chen SM (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74:212

    CAS  Google Scholar 

  152. Wang P, Li YX, Huang X, Wang L (2007) Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta 73:431

    CAS  Google Scholar 

  153. Dawoud AA, Kawaguchi T, Jankowiak R (2007) In-channel modification of electrochemical detector for the detection of bio-targets on microchip. Electrochem Commun 9:1536

    CAS  Google Scholar 

  154. Feng XM, Huang HP, Ye QQ, Zhu JJ, Hou WH (2007) Ag/polypyrrole core–shell nanostructures: interface polymerization, characterization, and modification by gold nanoparticles. J Phys Chem C 111:8463

    CAS  Google Scholar 

  155. Sun JF, Liu LH, Ren CL, Chen XG, Hu ZD (2008) A feasible method for the sensitive and selective determination of vitamin B1 with CdSe quantum dots. Microchim Acta 163:271

    CAS  Google Scholar 

  156. Wei Y, Wang GF, Li MG, Wang C, Fang B (2007) Determination of rutin using a CeO2 nanoparticle-modified electrode. Microchim Acta 158:269

    CAS  Google Scholar 

  157. Wang C, Wang GF, Fang B (2008) Electrocatalytic oxidation of bilirubin at ferrocenecarboxamide modified MWCNT–gold nanocomposite electrodes. Microchim Acta 164:113–118

    Google Scholar 

  158. Xu ZM, Yue Q, Zhuang ZJ, Xiao D (2008) Flow injection amperometric determination of acetaminophen at a gold nanoparticle modified carbon paste electrode. Microchim Acta (in press) doi:10.1007/s00604-008-0072-8

  159. Zhao J, Yu JJ, Wang F, Hu SS (2007) Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode, and its application to glucose sensing. Microchim Acta 156:277

    Google Scholar 

  160. Li LH, Zhang WD (2008) Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163:305

    CAS  Google Scholar 

  161. Li CZ, Liu Y, Luong JHT (2005) Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles. Anal Chem 77:478

    CAS  Google Scholar 

  162. Lu LP, Wang SQ, Lin XQ (2004) Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor. Anal Chim Acta 519:161

    CAS  Google Scholar 

  163. Hrapovic S, Liu YL, Male KB, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083

    CAS  Google Scholar 

  164. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192

    CAS  Google Scholar 

  165. You TY, Niwa O, Chen ZL, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191

    CAS  Google Scholar 

  166. Li J, Lin XQ (2007) Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta 596:222

    CAS  Google Scholar 

  167. Yogeswaran U, Thiagarajan S, Chen SM (2007) Nanocomposite of functionalized multiwall carbon nanotubes with Nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal Biochem 365:122

    CAS  Google Scholar 

  168. Wang L, Bai JY, Huang PF, Wang HJ, Zhang LY, Zhao YQ (2006) Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochem Commun 8:1035

    CAS  Google Scholar 

  169. Abdel Aal A, Hassan HB, Abdel Rahim MA (2008) Nanostructured Ni-P-TiO2 composite coatings for electrocatalytic oxidation of small organic molecules. J Electroanal Chem 619–620:17

    Google Scholar 

  170. Zhong X, Yuan R, Chai YQ, Liu Y, Dai JY, Tang DP (2005) Glucose biosensor based on self-assembled gold nanoparticles and double-layer 2 d-network (3-mercaptopropyl)-trimethoxysilane polymer onto gold substrate. Sensor Actuat B-Chem 104:191

    Google Scholar 

  171. Hu SQ, Xie JW, Xu QH, Rong KT, Shen GL, Yu RQ (2003) A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon. Talanta 61:769

    CAS  Google Scholar 

  172. Raj CR, Okajima T, Ohsaka T (2003) Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem 543:127

    CAS  Google Scholar 

  173. Weng J, Xue JM, Wang J, Ye JS, Cui HF, Sheu FS, Zhang QQ (2005) Gold-cluster sensors formed electrochemically at boron-doped-diamond electrodes: detection of dopamine in the presence of ascorbic acid and thiols. Adv Funct Mater 15:639

    CAS  Google Scholar 

  174. Koktysh DS, Liang XR, Yun BG, Pastoriza-Santos I, Matts RL, Giersig M, Serra-Rodríguez C, Liz-Marzán LM, Kotov NA (2002) Biomaterials by design: layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring. Adv Funct Mater 12:255

    CAS  Google Scholar 

  175. Yuan S, Hu SS (2004) Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes. Electrochim Acta 49:4287

    CAS  Google Scholar 

  176. Wang GF, Sun JG, Zhang W, Jiao SF, Fang B (2008) Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchim Acta (in press) doi:10.1007/s00604-008-0066-6

  177. Carralero V, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2005) Pulsed amperometric detection of histamine at glassy carbon electrodes modified with gold nanoparticles. Electroanalysis 17:289

    CAS  Google Scholar 

  178. Pang DW, Chen JH, Yao SZ, Nie LH, Xia JJ, Tao WY (2005) Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at copper-modified gold electrode. Sensor Actuat B-Chem 104:68

    Google Scholar 

  179. Male KB, Hrapovic S, Liu YL, Wang DS, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35

    CAS  Google Scholar 

  180. Shlyahovsky B, Katz E, Xiao Y, Pavlov V, Willner I (2005) Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles. Small 1:213

    CAS  Google Scholar 

  181. Liu ZM, Liu YL, Yang HF, Yang Y, Shen GL, Yu RQ (2005) A phenol biosensor based on immobilizing tyrosinase to modified core–shell magnetic nanoparticles supported at a carbon paste electrode. Anal Chim Acta 533:3

    CAS  Google Scholar 

  182. Fredj HB, Helali S, Esseghaier C, Vonna L, Vidal L, Abdelghani A (2008) Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications. Talanta 75:740

    CAS  Google Scholar 

  183. Liu GD, Lin YH (2005) Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 77:5894

    CAS  Google Scholar 

  184. Wang J, Liu GD, Wu H, Lin YH (2008) Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels. Anal Chim Acta 610:112

    CAS  Google Scholar 

  185. Lahav M, Shipway AN, Willner I (1999) Au-nanoparticle–bis-bipyridinium cyclophane superstructures: assembly, characterization and sensoric applications. J Chem Soc Perkin Trans 2:1925

    Google Scholar 

  186. Zhou ZL, Kang TF, Zhang Y, Cheng SY (2008) Electrochemical sensor for formaldehyde based on PtPd nanoparticles and a Nafion-modified glassy carbon electrode. Microchim Acta 164:133–138

    Google Scholar 

  187. Ye JS, Cui HF, Wen Y, Zhang WD, Xu GQ, Sheu FS (2006) Electrodeposition of platinum nanoparticles on multi-walled carbon nanotubes for electrocatalytic oxidation of methanol. Microchim Acta 152:267

    CAS  Google Scholar 

  188. Villullas HM, Mattos-Costa FI, Bulhões LOS (2004) Electrochemical oxidation of methanol on Pt nanoparticles dispersed on RuO2. J Phys Chem B 108:12898

    CAS  Google Scholar 

  189. Gutierrez E, Miller TC, Gonzalez-Redondo JR, Holcombe JA (1999) Characterization of immobilized poly-L-aspartate as a metal chelator. Environ Sci Technol 33:1664

    CAS  Google Scholar 

  190. Miller TC, Holcombe JA (1999) An ion-exchange microcolumn employing gold minigrids as supports for the on-line immobilization of poly(L-aspartate). Anal Chem 71:2667

    CAS  Google Scholar 

  191. Jones SEW, Compton RG (2008) Fabrication and applications of nanoparticle-modified electrodes in stripping analysis. Curr Anal Chem 4:177

    CAS  Google Scholar 

  192. Lee GJ, Lee HM, Rhee CK (2007) Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry. Electrochem Commun 9:2514

    CAS  Google Scholar 

  193. Song YS, Muthuraman G, Zen JM (2006) Trace analysis of hydrogen sulfide by monitoring As(III) at a poly(L-lactide) stabilized gold nanoparticles modified electrode. Electrochem Commun 8:1369

    CAS  Google Scholar 

  194. Rassaei L, Sillanpaa M, French RW, Compton RG, Marken F (2008) Arsenite determination in phosphate media at electroaggregated gold nanoparticle deposits. Electroanalysis 20:1286

    CAS  Google Scholar 

  195. Xiao L, Wildgoose GG, Compton RG (2008) Sensitive electrochemical detection of arsenic(III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal Chim Acta 620:44

    CAS  Google Scholar 

  196. He X, Zeng LP, Xing SJ, Xian YZ, Jin LT (2008) Microwave-irradiated synthesized platinum nanoparticles/carbon nanotubes for oxidative determination of trace arsenic(III). Electrochem Commun 10:551

    Google Scholar 

  197. Jena BK, Raj CR (2008) Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal Chem 80:4836

    CAS  Google Scholar 

  198. Hrapovic S, Liu YL, Luong JHT (2007) Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite. Anal Chem 79:500

    CAS  Google Scholar 

  199. Jena BK, Raj CR (2008) Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle. Talanta 76:161

    CAS  Google Scholar 

  200. Israel LB, Kariuki NN, Han L, Maye MM, Luo J, Zhong CJ (2001) Electroactivity of Cu2+ at a thin film assembly of gold nanoparticles linked by 11-mercaptoundecanoic acid. J Electroanal Chem 517:69

    CAS  Google Scholar 

  201. Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of Arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76:5924

    CAS  Google Scholar 

  202. Yuan S, Chen WH, Hu SS (2004) Simultaneous determination of cadmium (II) and lead (II) with clay nanoparticles and anthraquinone complexly modified glassy carbon electrode. Talanta 64:922

    CAS  Google Scholar 

  203. Yantasee W, Hongsirikarn K, Warner CL, Choi DW, Sangvanich T, Toloczko MB, Warner MG, Fryxell GE, Addleman RS, Timchalk C (2008) Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst 133:348

    CAS  Google Scholar 

  204. Zimer AM, Bertholdo R, Grassi MT, Zarbin AJG, Mascaro LH (2003) Template carbon dispersed in polyaniline matrix electrodes: evaluation and application as electrochemical sensors to low concentrations of Cu2+ and Pb2+. Electrochem Commun 5:983

    CAS  Google Scholar 

  205. Dijk NV, Fletcher S, Madden CE, Marken F (2001) Nanocomposite electrodes made of carbon nanofibers and black wax. Anodic stripping voltammetry of zinc and lead. Analyst 126:1878

    Google Scholar 

  206. Qi LF, Xu ZR (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloid Surface A 251:183

    CAS  Google Scholar 

  207. Chang YC, Chen DH (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interf Sci 283:446

    CAS  Google Scholar 

  208. Zhu XH, Kang GF, Lin XQ (2007) PdCu alloy nanoclusters generation and activity tuning for electrocatalytic oxidation of nitrite. Microchim Acta 159:141

    CAS  Google Scholar 

  209. Karam P, Halaoui LI (2008) Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. Anal Chem 80:5441

    CAS  Google Scholar 

  210. Wang SQ, Yin YM, Lin XQ (2004) Cooperative effect of Pt nanoparticles and Fe(III) in the electrocatalytic oxidation of nitrite. Electrochem Commun 6:259

    CAS  Google Scholar 

  211. Endo T, Yoshimura T, Esumi K (2004) Voltammetric study of sodium hypochlorite using dendrimer-stabilized gold nanoparticles. J Colloid Interf Sci 269:364

    CAS  Google Scholar 

  212. You TY, Niwa O, Tomita M, Hirono S (2003) Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal Chem 75:2080

    CAS  Google Scholar 

  213. Gao F, Wang L, Tang LJ, Zhu CQ (2005) A novel nano-sensor based on rhodamine-β-isothiocyanate-doped silica nanoparticle for pH measurement. Microchim Acta 152:131

    CAS  Google Scholar 

  214. Li XH, Zhang ZJ, Zhang JW, Zhang Y, Liu KZ (2006) A new solid-state pH sensor based on a platinum nanoparticle surface coated with poly(quinoxaline), and its application. Microchim Acta 154:297

    CAS  Google Scholar 

  215. René K, Patrick J, Alexia WEH, Peter CH (2005) Amperometric sensing in the gas-phase. Anal Chim Acta 549:1

    Google Scholar 

  216. Chiou CY, Chou TC (1996) Amperometric sulfur dioxide sensors using the gold-deposited gas-diffusion electrode. Electroanalysis 8:1179

    CAS  Google Scholar 

  217. Bochenkov VE, Stephan N, Brehmer L, Zagorskii VV, Sergeev GB (2002) Sensor activity of thin polymer films containing lead nanoparticles. Colloid Surface A 198–200:911

    Google Scholar 

  218. Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21:7937

    CAS  Google Scholar 

  219. Siemons M, Leifert A, Simon U (2007) Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv Funct Mater 17:2189

    CAS  Google Scholar 

  220. Ye H, Crooks JA, Crooks RM (2007) Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by Pt dendrimer-encapsulated nanoparticles. Langmuir 23:11901

    CAS  Google Scholar 

  221. Zhu M, Liu M, Shi G, Xu F, Ye X, Chen J, Jin L, Jin J (2002) Novel nitric oxide microsensor and its application to the study of smooth muscle cells. Anal Chim Acta 455:199

    CAS  Google Scholar 

  222. Yu AM, Liang ZJ, Cho JH, Caruso F (2003) Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 3:1203

    CAS  Google Scholar 

  223. Zhang JD, Oyama M (2005) Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta 540:299

    CAS  Google Scholar 

  224. Wang SQ, Lin XQ (2005) Electrodeposition of Pt-Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochim Acta 50:2887

    CAS  Google Scholar 

  225. Young P, Lu YJ, Terrill R, Li J (2005) High-sensitivity NO2 detection with carbon nanotube–gold nanoparticle composite films. J Nanosci Nanotechno 5:1509

    CAS  Google Scholar 

  226. Wang HY, Huang YG, Tan ZA, Hu XY (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526:13

    CAS  Google Scholar 

  227. Robert AF (1999) Nanomedicine, volume I: basic capabilities. Landes Bioscience, Austin, TX ISBN 157059645X

    Google Scholar 

  228. Freitas RA Jr (2005) What is nanomedicine? Nanomedicine 1:2

    CAS  Google Scholar 

  229. Hughes GA (2005) Nanostructure-mediated drug delivery. Nanomedicine 1:22

    CAS  Google Scholar 

  230. Beissenhirtz MK, Willner I (2006) DNA-based machines. Org Biomol Chem 4:3392

    CAS  Google Scholar 

  231. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605

    CAS  Google Scholar 

  232. Li JJ, Tan W (2002) Single DNA molecule nanomotor. Nano Lett 2:315

    CAS  Google Scholar 

  233. Shin JS, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834

    CAS  Google Scholar 

  234. Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43:4906

    CAS  Google Scholar 

  235. Beissenhirtz MK, Elnathan R, Weizmann Y, Willner I (2007) The aggregation of Au nanoparticles by an autonomous DNA machine detects viruses. Small 3:375

    CAS  Google Scholar 

  236. Weizmann Y, Beissenhirtz MK, Cheglakov Z, Nowarski R, Kotler M, Willner I (2006) A virus spotlighted by an autonomous DNA machine. Angew Chem Int Ed 45:7384

    CAS  Google Scholar 

  237. Cheglakov Z, Weizmann Y, Basnar B, Willner I (2007) Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes. Org Biomol Chem 5:223

    CAS  Google Scholar 

  238. Funfak A, Cao JL, Wolfbeis OS, Martin K, Köhler JM (2008) Monitoring cell cultivation in microfluidic segments by optical pH sensing with a micro flow-through fluorometer using dye-doped polymer particles. Microchim Acta (in press) doi:10.1007/s00604-008-0096-0

  239. Blumenzweig I, Zayats M, Baraz L, Kotler M, Willner I (2004) Electronic transduction of HIV-1 drug resistance in AIDS patients lital alfonta. ChemBioChem 5:949

    Google Scholar 

  240. Jiang M, Ray WW, Mukherjee B, Wang J (2004) Electrochemically controlled release of lipid/DNA complexes: a new tool for synthetic gene delivery system. Electrochem Commun 6:576

    CAS  Google Scholar 

  241. Patolsky F, Weizmann Y, Katz E, Willner I (2004) Amplified telomerase analysis by using rotating magnetic particles: the rapid and sensitive detection of cancer cells. ChemBioChem 5:943

    Google Scholar 

  242. Ding L, Hao C, Xue YD, Ju HX (2007) A bio-inspired support of gold nanoparticles−chitosan nanocomposites gel for immobilization and electrochemical study of K562 Leukemia cells. Biomacromolecules 8:1341

    CAS  Google Scholar 

  243. Du D, Cai J, Ju HX, Yan F, Chen J, Jiang XQ, Chen HY (2005) Construction of a biomimetic zwitterionic interface for monitoring cell proliferation and apoptosis. Langmuir 21:8394

    CAS  Google Scholar 

  244. Dua D, Liub SL, Chena J, Jua HX, Liana HZ, Lia JX (2005) Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials 26:6487

    Google Scholar 

  245. Jaffrezic-Renault N, Martelet C, Chevolot Y, Cloarec JP (2007) Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads. Sensors 7:589

    CAS  Google Scholar 

  246. Kularatne BY, Lorigan P, Browne S, Suvarna SK, Smith MO, Lawry J (2002) Monitoring tumour cells in the peripheral blood of small cell lung cancer patients. Cytometry 50:160

    CAS  Google Scholar 

  247. Uchida E, Kogi M, Oshizawa T, Furuta B, Satoh K, Iwata A, Murata M, Hikata M, Yamaguchi T (2007) Optimization of the virus concentration method using polyethyleneimine-conjugated magnetic beads and its application to the detection of human hepatitis A, B and C viruses. J Virol Methods 143:95

    CAS  Google Scholar 

  248. Hassena WM, Chaixa C, Abdelghanib A, Bessueillea F, Leonarda D, Jaffrezic-Renault N (2008) An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sensor Actuators B 134:755

    Google Scholar 

  249. Hnaiein M, Hassen WM, Abdelghani A, Fournier-Wirth C, Coste J, Bessueille F, Leonard D, Jaffrezic-Renault N (2008) A conductometric immunosensor based on functionalized magnetite nanoparticles for E. coli detection. Electrochem Commun 10:1152

    CAS  Google Scholar 

  250. Maalouf R, Hassen WM, Fournier-Wirth C, Coste J, Jaffrezic-Renault N (2008) Comparison of two innovatives approaches for bacterial detection: paramagnetic nanoparticles and self-assembled multilayer processes. Microchim Acta 163:157

    CAS  Google Scholar 

  251. LaGier MJ, Scholin CA, Fell JW, Wang J, Goodwin KD (2005) An electrochemical RNA hybridization assay for detection of the fecal indicator bacterium Escherichia coli. Mar Pollut Bull 50:1251

    CAS  Google Scholar 

  252. Gao ZQ, Yang ZC (2006) Detection of microRNAs using electrocatalytic nanoparticle tags. Anal Chem 78:1470

    CAS  Google Scholar 

  253. Jen CP, Chen YH, Fan CS, Yeh CS, Lin YC, Shieh DB, Wu CL, Chen DH, Chou CH (2004) A nonviral transfection approach in vitro: the design of a gold nanoparticle vector joint with microelectromechanical systems. Langmuir 20:1369

    CAS  Google Scholar 

  254. Wang XM, Zhang RY, Wu CH, Dai YY, Song M, Gutmann S, Gao F, Lv G, Li JY, Li XM, Guan ZQ, Fu DG, Chen BA (2006) The application of Fe3O4 nanoparticles in cancer research: a new strategy to inhibit drug resistance. J Biom Mater Res 80A:852–860

    Google Scholar 

  255. Philippe GS (2008) Charging colloidal quantum dots by electrochemistry. Microchim Acta 160:309

    Google Scholar 

Download references

Acknowledgements

The research is supported by the by the National Natural Science Foundation of China (Nos. 60571042 and 30770549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengshui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Hu, S. Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165, 1–22 (2009). https://doi.org/10.1007/s00604-009-0136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0136-4

Keywords

Navigation