Skip to main content
Log in

Speciation of chromium in water samples using dispersive liquid–liquid microextraction and flame atomic absorption spectrometry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel method for preconcentration is described for chromium speciation at microgram per liter to sub-microgram per liter levels. It is based on selective complex formation of both Cr(VI) and Cr(III) followed by dispersive liquid–liquid microextraction and determination by microsample introduction-flame atomic absorption spectrometry. Effects influencing complex formation and extraction (such as pH, temperature, time, solvent, salinity and the amount of chelating agent) have been optimized. Enrichment factors up to 275 and 262 were obtained for Cr(VI) and total Cr, respectively. The calibration graph is linear from 0.3 to 20 µg L−1, and detection limits are 0.07 and 0.08 µg L−1 for Cr(VI) and total Cr, respectively. Relative standard deviations (RSDs) were obtained to be 2.0% for Cr(VI) and 2.6% for total Cr (n = 7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stallings D, Vincent JB (2006) Chromium: a case study in how not to perform nutritional research. Curr Topics Nutraceutical Res 4:89

    CAS  Google Scholar 

  2. Nriagu JO, Nieboer E (1988) Chromium in the natural and human environment. Wiley, New York

    Google Scholar 

  3. Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263

    Article  CAS  Google Scholar 

  4. Wu T, Jiang Y, Han D, Wang F, Zhu J (2005) Speciation of chromium in water using crosslinked chitosan-bound FeC nanoparticles as solid-phase extractant, and determination by flame atomic absorption spectrometry. Microchim Acta 159:333

    Article  Google Scholar 

  5. Ren Y, Fan Z, Wang J (2006) Speciation analysis of chromium in natural water samples by electrothermal atomic absorbance spectrometry after separation/preconcentration with nanometer-sized zirconium oxide immobilized on silica gel. Microchim Acta 158:227

    Article  Google Scholar 

  6. Kendüzler E, Yalçınkaya Ö, Baytak S, Türker AR (2008) Application of full factorial design for the preconcentration of chromium by solid phase extraction with Amberlyst 36 resin. Microchim Acta 160:389

    Article  Google Scholar 

  7. Karosi R, Andruch V, Posta J, Balogh J (2006) Separation of chromium (VI) using complexation and its determination with GFAAS. Microchem J 82:61

    Article  CAS  Google Scholar 

  8. Themelis DG, Kika FS, Economou A (2006) Flow injection direct spectrophotometric assay for the speciation of trace chromium(III) and chromium(VI) using chromotropic acid as chromogenic reagent. Talanta 69:615

    Article  CAS  Google Scholar 

  9. Grabarczyk M, Tyszczuk K, Korolczuk M (2006) Catalytic adsorptive stripping voltammetric procedure for determination of total chromium in environmental materials. Electroanalysis 18:1223

    Article  CAS  Google Scholar 

  10. Sun YC, Lin CY, Wu SF, Chung YT (2006) Evaluation of on-line desalter-inductively coupled plasma-mass spectrometry system for determination of Cr(III), Cr(VI), and total chromium concentrations in natural water and urine samples. Spectrochim Acta - Part B At Spectrosc 61:230

    Article  Google Scholar 

  11. Schramel P, Xu LQ, Knapp G, Michaelis M (2005) Application of an on-line preconcentration system in simultaneous ICP-AES. Microchim Acta 106:191

    Article  Google Scholar 

  12. Padarauskas A, Judzentiene A, Naujalis E, Paliulionyte V (1998) On-line preconcentration and determination of chromium(VI) in waters by high-performance liquid chromatography using pre-column complexation with 1,5-diphenylcarbazide. J Chromatogr A 808:193

    Article  CAS  Google Scholar 

  13. Minami T, Sohrin Y, Ueda L (2005) Determination of chromium. Copper and lead in river water by graphite-furnace atomic absorption spectrometry after coprecipitation with terbium hydroxide. Anal Sci 21:1519

    Article  CAS  Google Scholar 

  14. Sun Z, Liang P (2008) Determination of Cr(III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry. Microchim Acta 162:121

    Article  CAS  Google Scholar 

  15. Paleologos EK, Stalikas CD, Tzouwara-Karayanni SM, Karayannis MI (2001) Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis—spectrofluorimetry. Anal Chim Acta 436:49

    Article  CAS  Google Scholar 

  16. Tang AN, Jiang DQ, Jiang Y, Wang SW, Yan XP (2004) Cloud point extraction for high-performance liquid chromatographic speciation of Cr(III) and Cr(VI) in aqueous solutions. J Chromatogr A 1036:183

    Article  CAS  Google Scholar 

  17. Adria-Cerezo DM, Llobat-Estelles M, Maurı-Aucejo AR (2000) Preconcentration and speciation of chromium in waters using solid-phase extraction and atomic absorption spectrometry. Talanta 51:531

    Article  CAS  Google Scholar 

  18. El-Shahawi MS, Hassan SSM, Othman AM, Zyada MA, El-Sonbati MA (2005) Chemical speciation of chromium(III, VI) employing extractive spectrophotometry and tetraphenylarsonium chloride or tetraphenylphosphonium bromide as ion-pair reagent. Anal Chim Acta 534:319

    Article  CAS  Google Scholar 

  19. Beni A, Karosi R, Posta J (2007) Speciation of hexavalent chromium in waters by liquid–liquid extraction and GFAAS determination. Microchem J 85:103

    Article  CAS  Google Scholar 

  20. Nielson SC, Hansen EH (2000) Interfacing flow injection analysis (sequential injection analysis) and electro-thermal atomic absorption spectrometry determination of trace-levels of Cr(VI) via on-line pre-concentration by adsorption in a knotted reactor and by liquid–liquid extraction. Anal Chim Acta 422:47

    Article  Google Scholar 

  21. Karadjova I (2005) Determination of Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb in natural waters, alkali and alkaline earth salts by electrothermal atomic absorption spectrometry after preconcentration by column solid phase extraction. Microchim Acta 130:185

    Article  Google Scholar 

  22. Anthemidis AN, Koussoroplis S-JV (2007) Determination of chromium(VI) and lead in water samples by on-line sorption preconcentration coupled with flame atomic absorption spectrometry using a PCTFE-beads packed column. Talanta 71:1728

    Article  CAS  Google Scholar 

  23. Anthemidis AN, Zachariadis GA, Koussoroplis S-JV, Stratis JA (2002) Flame atomic absorption spectrometric determination of chromium(VI) by on-line preconcentration system using a PTFE packed column. Talanta 57:15

    Article  CAS  Google Scholar 

  24. Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1

    Article  CAS  Google Scholar 

  25. Garcia-Lopez M, Rodriguez I, Cela R (2007) Development of a dispersive liquid–liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples. J Chromatogr A 1166:9

    Article  CAS  Google Scholar 

  26. Leong MI, Huang SD (2008) Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J Chromatogr A 1211:8

    Article  CAS  Google Scholar 

  27. Liang P, Xu J, Li Q (2008) Application of dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples. Anal Chim Acta 609:53

    Article  CAS  Google Scholar 

  28. Maleki R, Nezhad NM, Samadi N, Farhadi K (2009) Trace determination of EDTA from water samples using dispersive liquid–liquid microextraction coupled with HPLC-DAD. Microchim Acta 165:97

    Google Scholar 

  29. Melwanki MB, Fuh MR (2008) Partitioned dispersive liquid–liquid microextraction: an approach for polar organic compounds extraction from aqueous samples. J Chromatogr A 1207:24

    Article  CAS  Google Scholar 

  30. Farajzadeh MA, Bahrama M, Jonsson JA (2007) Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants. Anal Chim Acta 591:69

    Article  CAS  Google Scholar 

  31. Shokoufi N, Shemirani F, Assadi Y (2007) Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid–liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Anal Chim Acta 597:349

    Article  CAS  Google Scholar 

  32. Zeini Jahromi E, Bidari A, Assadi Y, Milani Hosseini MR, Jamali MR (2007) Dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometry ultra trace determination of cadmium in water samples. Anal Chim Acta 585:305

    Article  CAS  Google Scholar 

  33. Naseri MT, Milani Hosseini MR, Assadi Y, Kiani A (2008) Rapid determination of lead in water samples by dispersive liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry. Talanta 75:56

    Article  CAS  Google Scholar 

  34. Bidari A, Hemmatkhah P, Jafarvand S, Milani Hosseini MR, Assadi Y (2008) Selenium analysis in water samples by dispersive liquid–liquid microextraction based on piazselenol formation and GC-ECD. Microchim Acta 163:243

    Article  CAS  Google Scholar 

  35. Liang P, Sang H (2008) Determination of trace lead in biological and water samples with dispersive liquid–liquid microextraction preconcentration. Anal Biochem 380:21

    Article  CAS  Google Scholar 

  36. Naseri MT, Hemmatkhah P, Milani Hosseini MR, Assadi Y (2008) Combination of dispersive liquid–liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples. Anal Chim Acta 610:135

    Article  CAS  Google Scholar 

  37. AN Anthemidis, K-IG Ioannou (2009) On-line sequential injection dispersive liquid–liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta. doi:10.1016/j.talanta.2009.03.005

  38. Paleologos EK, Stalikas CD, Karayannis MI (2001) An optimised single-reagent method for the speciation of chromium by flame atomic absorption spectrometry based on surfactant micelle-mediated methodology. Analyst 126:389

    Article  CAS  Google Scholar 

  39. Tsogas GZ, Giokas DL, Vlessidis AG, Evmiridis NP (2004) A single-reagent method for the speciation of chromium in natural waters by flame atomic absorption spectrometry based on vesicular liquid coacervate extraction. Spectrochim Acta - Part B At Spectrosc 59:957

    Article  Google Scholar 

  40. Andrle CM, Jakubowski N, Broekaert JAC (1997) Speciation of chromium using reversed phased-high performance liquid chromatography coupled to different spectrometric detection methods. Spectrochim Acta - Part B At Spectrosc 52:189

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the Research Council of Iran University of Science and Technology (IUST), for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Assadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmatkhah, P., Bidari, A., Jafarvand, S. et al. Speciation of chromium in water samples using dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. Microchim Acta 166, 69–75 (2009). https://doi.org/10.1007/s00604-009-0167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0167-x

Keywords

Navigation