Skip to main content
Log in

Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor based on molecularly imprinted polypyrrole membranes is reported for the determination of 2,4-dichlorophenoxy acetic acid (2,4-D). The sensor was prepared by electropolymerization of pyrrole on a glassy carbon electrode in the presence of 2,4-D as a template. The template was removed by overoxidation at +1.3 V in buffer solution. The sensor can effectively improve the reductive properties of 2,4-D and eliminate interferences by other pesticides and electroactive species. The peak current at -0.78 V is linear with the concentration of 2,4-D from 1.0 to 10 µM, the detection limit is 0.83 µM (at 3σ), and the relative standard deviation is 3.9% (at 5.0 µM of 2,4-D; n = 7). The method has been successfully applied to the determination of 2,4-D in environmental water samples, with recovery rates ranging from 92% to 108%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu JM, Ee KH, Lee HK (2005) Automated dynamic liquid–liquid–liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters. J Chromatogr A 1082:121–127

    Article  CAS  Google Scholar 

  2. Zhu LY, Lee HK (2001) Field-amplified sample injection combined with water removal by electroosmotic flow pump in acidic buffer for analysis of phenoxy acid herbicides by capillary electrophoresis. Anal Chem 73:3065–3072

    Article  CAS  Google Scholar 

  3. Shin HS (2006) Determination of phenoxy acid pesticides in frog and fish tissues by gas chromatography-mass spectrometry. Chromatographia 63:579–583

    Article  CAS  Google Scholar 

  4. Kim GY, Shim J, Kang MS, Moon SH (2008) Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level. J Environ Monit 10:632–637

    Article  CAS  Google Scholar 

  5. Deng AP, Yang H (2007) A multichannel electrochemical detector coupled with an ELISA microtiter plate for the immunoassay of 2, 4-dichlorophenoxyacetic acid. Sens Actuators B: Chem 124:202–208

    Article  Google Scholar 

  6. Navrátilová I, Skládal P (2004) The immunosensors for measurement of 2, 4-dichlorophenoxyacetic acid based on electrochemical impedance spectroscopy. Bioelectrochemistry 62:11–18

    Article  Google Scholar 

  7. Gobi KV, Kim SJ, Tanaka H, Shoyama Y, Miura N (2007) Novel surface plasmon resonance (SPR) immunosensor based on monomolecular layer of physically-adsorbed ovalbumin conjugate for detection of 2, 4-dichlorophenoxyacetic acid and atomic force microscopy study. Sens Actuators B: Chem 123:583–593

    Article  Google Scholar 

  8. Kim SJ, Gobi KV, Tanaka H, Shoyama Y, Miura N (2008) A simple and versatile self-assembled monolayer based surface plasmon resonance immunosensor for highly sensitive detection of 2, 4-D from natural water resources. Sens Actuators B: Chem 130:281–289

    Article  Google Scholar 

  9. Gobi KV, Tanaka H, Shoyama Y, Miura N (2005) Highly sensitive regenerable immunosensor for label-free detection of 2, 4-dichlorophenoxyacetic acid at ppb levels by using surface plasmon resonance imaging. Sens Actuators B: Chem 111(112):562–571

    Article  Google Scholar 

  10. Mosiello L, Nencini L, Segre L, Spanò M (1997) A fibre-optic immunosensor for 2, 4-dichlorophenoxyacetic acid detection. Sens Actuators B: Chem 39:353–359

    Article  Google Scholar 

  11. Long F, Shi HC, He M, Zhu AN (2008) Sensitive and rapid detection of 2, 4-dicholorophenoxyacetic acid in water samples by using evanescent wave all-fiber immunosensor. Biosens Bioelectron 23:1361–1366

    Article  CAS  Google Scholar 

  12. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  13. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102:1–28

    Article  CAS  Google Scholar 

  14. Xie CG, Zhang ZP, Wang DP, Guan GJ, Gao DM, Liu JH (2006) Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem 78:8339–8346

    Article  CAS  Google Scholar 

  15. Xie CG, Liu BH, Wang ZY, Gao DM, Guan GJ, Zhang ZP (2008) Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem 80:437–443

    Article  CAS  Google Scholar 

  16. Gao DM, Zhang ZP, Wu MH, Xie CG, Guan GJ, Wang DP (2007) A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc 129:7859–7866

    Article  CAS  Google Scholar 

  17. Yang M, Chen YT, Ma J, Huai LF (2009) Differential pulse voltammetric determination of trace rotenone using molecularly imprinted polymer microspheres. Microchim Acta 166:95–99

    Article  CAS  Google Scholar 

  18. Jin GY, Tang YW (2009) Evaluation of a novel silica-supported sol–gel sorbent prepared by a surface molecular imprinting technique for the selective separation of estazolam from human plasma. Microchim Acta 165:143–149

    Article  CAS  Google Scholar 

  19. Malitesta C, Losito I, Zambonin PG (1999) Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal Chem 71:1366–1370

    Article  CAS  Google Scholar 

  20. Liu XY, Li CY, Wang CF, Li T, Hu SH (2006) The preparation of molecularly imprinted poly(ophenylenediamine) membranes for the specific O, O-dimethyl-α-hydroxylphenyl phosphonate sensor and its characterization by AC impedance and cyclic voltammetry. J Appl Polym Sci 101:2222–2227

    Article  CAS  Google Scholar 

  21. Özcan L, Şahin Y (2007) Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sens Actuators B: Chem 127:362–369

    Article  Google Scholar 

  22. Ramanavičius A, Ramanavičienė A, Malinauskasc A (2006) Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 51:6025–6037

    Article  Google Scholar 

  23. Shiigi H, Yakabe H, Kishimoto M, Kijima D, Zhang Y, Sree U, Deore BA, Nagaoka T (2003) Molecularly Imprinted overoxidized polypyrrole colloids: promising materials for molecular recognition. Microchim Acta 143:155–162

    Article  CAS  Google Scholar 

  24. Deore B, Chen ZD, Nagaoka T (2000) Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal Chem 72:3989–3994

    Article  CAS  Google Scholar 

  25. Okuno H, Kitano T, Yakabe H, Kishimoto M, Deore BA, Siigi H, Nagaoka T (2002) Characterization of overoxidized polypyrrole colloids imprinted with L-lactate and their application to enantioseparation of amino acids. Anal Chem 74:4184–4190

    Article  CAS  Google Scholar 

  26. Özkorucuklu SP, Şahin Y, Alsancak G (2008) Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors 8:8463–8478

    Article  Google Scholar 

  27. Xie CG, Li HF, Xie CY, Zhou HK (2009) Preparation of electrochemical salicylic acid sensor based on molecular imprinted film. Chinese J Anal Chem 37:1045–1048

    CAS  Google Scholar 

  28. Feng JT, Wei Yan W, Zhang LZ (2009) Synthesis of polypyrrole micro/nanofibers via a self-assembly process. Microchim Acta 166:261–267

    Article  CAS  Google Scholar 

  29. Xie CG, Li HF, Li SQ, Wu J, Zhang ZP (2010) Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Anal Chem 82:241–249

    Article  CAS  Google Scholar 

  30. Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordiers AJ, Tuñón-Blanco P (2004) Electrochemical sensors based on molecularly imprinted polymers. Trends in Anal Chem 23:36–48

    Article  Google Scholar 

  31. Solanki PR, Prabhakar N, Pandey MK, Malhotra BD (2008) Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique. Biomed Mircrodevies 10:757–767

    Article  CAS  Google Scholar 

  32. Li JP, Zhao J, Wei XP (2009) A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol. Sens Actuators B: Chem 140:663–669

    Article  Google Scholar 

  33. Lu LP, Wang SQ, Lin XQ (2004) Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticles for norepinephrine biosensor. Anal Chim Acta 519:161–166

    Article  CAS  Google Scholar 

  34. Jie GF, Liu B, Pan HC, Zhu JJ, Chen HY (2007) CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem 79:5574–5581

    Article  CAS  Google Scholar 

  35. Liu Y, Yu YY, Yang QY, Qu YH, Liu YM, Shi GY, Jin LT (2008) Trace detection of nitroaromatic compounds with layer-by-layer assembled {SBA/PSS}n/PDDA modified electrode. Sens Actuators B: Chem 131:432–438

    Article  Google Scholar 

  36. Schöllhorn B, Maurice C, Flohic G, Limoges B (2000) Competitive assay of 2, 4-dichlorophenoxyacetic acid using a polymer imprinted with an electrochemically active tracer closely related to the analyte. Analyst 125:665–667

    Article  Google Scholar 

  37. Weetall HH, Hatchett DW, Rogers KR (2005) Electrochemically deposited polymer-coated gold electrodes selective for 2, 4-dichlorophenoxyacetic Acid. Electroanal 17:1789–1794

    Article  CAS  Google Scholar 

  38. Liu GD, Lin YH (2005) Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 77:5894–5901

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 20875070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggen Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, C., Gao, S., Guo, Q. et al. Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element. Microchim Acta 169, 145–152 (2010). https://doi.org/10.1007/s00604-010-0303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0303-7

Keywords

Navigation