Skip to main content
Log in

Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with hydroxyapatite nanopowder (HA-NP) and characterized in terms of electrochemical oxidation of 4-nitrophenol (4-NP) via cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and chronocoulumetry. The oxidation peak current of 4-NP at the modified electrode was increased (compared to the bare GCE), thus indicating that the HA-NP exhibits a remarkable enhancement effect on the electrochemical oxidation of 4-NP. The effects of loading with HA-NP, pH value, scan rate and accumulation time were examined. The oxidation peak current of 4-NP is proportional to its concentration in the range from 1.0 μM to 300 μM, with a correlation coefficient of 0.9996. The detection limit is 0.6 μM (at an S/N = 3). The method is simple, selective and sensitive. It was successfully applied to the determination of 4-NP in water samples, with recoveries ranging from 96% to 104%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agency UEP (1979) Fed Regist 44

  2. Agency UEP (1989) Fed Regist 52

  3. Niazi A, Yazdanipour A (2007) Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares. J Hazard Mater 146:421

    Article  CAS  Google Scholar 

  4. Nistor C, Oubi A, Marco MP, Barceló D, Emnéus J (2001) Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal Chim Acta 426:185

    Article  CAS  Google Scholar 

  5. Thompson MJ, Ballinger LN, Cross SE, Roberts MS (1996) High-performance liquid chromatographic determination of phenol, 4-nitrophenol, β-naphthol and a number of their glucuronide and sulphate conjugates in organ perfusate. J Chromatogr B 677:117

    Article  Google Scholar 

  6. Galeano-Diaz T, Guiberteau-Cabanillas A, Mora-Diez N, Parrilla-Vazquez P, Salinas-Lopez F (2000) Rapid and sensitive determination of 4-nitrophenol, 3-methyl-4-nitrophenol, 4, 6-dinitro-o-cresol, parathion-methyl, fenitrothion, and parathion-ethyl by liquid chromatography with electrochemical detection. J Agric Food Chem 48:4508

    Article  CAS  Google Scholar 

  7. Guo X, Wang Z, Zhou S (2004) The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta 64:135

    Article  CAS  Google Scholar 

  8. Yang X, Shen G, Yu R (2001) A fiber optode for p-nitrophenol based on covalently bound 9-allylaminoacridine. Microchim Acta 136:73

    Article  CAS  Google Scholar 

  9. Huang W, Yang C, Zhang S (2003) Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode. Anal Bioanal Chem 375:703

    CAS  Google Scholar 

  10. Yang C (2004) Electrochemical determination of 4-nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode. Microchim Acta 148:87

    Article  CAS  Google Scholar 

  11. Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D, Ding Y (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11:1365

    Article  CAS  Google Scholar 

  12. Kafi AKM, Chen A (2009) A novel amperometric biosensor for the detection of nitrophenol. Talanta 79:97

    Article  CAS  Google Scholar 

  13. Del Mar Cordero-Rando M, Barea-Zamora M, Barberá-Salvador JM, Naranjo-Rodríguez I, Muñoz-Leyva JA, Hidalgo-Hidalgo de Cisneros JL (1999) Electrochemical study of 4-nitrophenol at a modified carbon paste electrode. Microchim Acta 132:7

    Article  Google Scholar 

  14. Hu S, Xu C, Wang G, Cui D (2001) Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54:115

    Article  CAS  Google Scholar 

  15. El Mhammedi MA, Achak M, Bakasse M, Chtaini A (2009) Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: application in river water samples. J Hazard Mater 163:323

    Article  CAS  Google Scholar 

  16. Lin K, Pan J, Chen Y, Cheng R, Xu X (2009) Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J Hazard Mater 161:231

    Article  CAS  Google Scholar 

  17. Wang B, Zhang JJ, Pan ZY, Tao XQ, Wang HS (2009) A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film. Biosens Bioelectron 24:1141

    Article  CAS  Google Scholar 

  18. El Mhammedi MA, Achak M, Chtaini A (2009) Ca10(PO4)6(OH)2-modified carbon-paste electrode for the determination of trace lead (II) by square-wave voltammetry. J Hazard Mater 161:55

    Article  CAS  Google Scholar 

  19. El Mhammedi MA, Bakasse M, Chtaini A (2007) Square-wave voltammetric determination of paraquat at carbon paste electrode modified with hydroxyapatite. Electroanalysis 19:1727

    Article  CAS  Google Scholar 

  20. Agboola B, Nyokong T (2007) Electrocatalytic oxidation of chlorophenols by electropolymerised nickel (II) tetrakis benzylmercapto and dodecylmercapto metallophthalocyanines complexes on gold electrodes. Electrochim Acta 52:5039

    Article  CAS  Google Scholar 

  21. Eickhoff H, Jung G, Rieker A (2001) Oxidative phenol coupling-tyrosine dimers and libraries containing tyrosyl peptide dimers. Tetrahedron 57:353

    Article  CAS  Google Scholar 

  22. Koile RC, Johnson DC (1979) Electrochemical removal of phenolic films from a platinum anode. Anal Chem 51:741

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  24. Zhou C, Liu Z, Dong Y, Li D (2009) Electrochemical behavior of o-nitrophenol at hexagonal mesoporous silica modified carbon paste electrodes. Electroanalysis 21:853

    CAS  Google Scholar 

  25. Fan S, Xiao F, Liu L, Zhao F, Zeng B (2008) Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder. Sensor Actuat B 132:34

    Article  Google Scholar 

  26. Andrieux CP, Saveant JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) versus homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163

    Article  CAS  Google Scholar 

  27. Anson F (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt (III)-(ethylenedinitrilo (tetraacetate) on mercury electrodes. Anal Chem 36:932

    Article  CAS  Google Scholar 

  28. Calvo-Marzal P, Rosatto SS, Granjeiro PA, Aoyama H, Kubota LT (2001) Electroanalytical determination of acid phosphatase activity by monitoring p-nitrophenol. Anal Chim Acta 441:207

    Article  CAS  Google Scholar 

  29. Lupu S, Lete C, Marin M, Totir N, Balaure PC (2009) Electrochemical sensors based on platinum electrodes modified with hybrid inorganic-organic coatings for determination of 4-nitrophenol and dopamine. Electrochim Acta 54:1932

    Article  CAS  Google Scholar 

  30. Zhao GH, Tang YT, Liu MC, Lei YZ, Xiao XE (2007) Direct and simultaneous determination of phenol, hydroquinone and nitrophenol at boron-doped diamond film electrode. Chin J Chem 25:1445

    Article  CAS  Google Scholar 

  31. Fischer J, Vanourkova L, Danhel A, Vyskocil V, Cizek K, Barek J, Peckova K, Yosypchuk B, Navratil T (2007) Voltammetric determination of nitrophenols at a silver solid amalgam electrode. Int J Electrochem Sci 2:226

    CAS  Google Scholar 

  32. Sun W, Yang MX, Jiang Q, Jiao K (2008) Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode. Chin Chem Lett 19:1156

    Article  CAS  Google Scholar 

  33. Zhu S, Niu W, Li H, Han S, Xu G (2009) Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample. Talanta 79:1441

    Article  CAS  Google Scholar 

  34. de Cássia Silva Luz R, Damos FS, de Oliveira AB, Beck J, Kubota LT (2004) Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode. Talanta 64:935

    Article  Google Scholar 

  35. Cheng H, Scott K (2006) Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode. Electrochim Acta 51:3429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.20775044) and the Natural Science Foundation of Shandong province, China (Y2006B20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyun Ai or Lusheng Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

(DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Zhou, Y., Ai, S. et al. Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta 169, 87–92 (2010). https://doi.org/10.1007/s00604-010-0309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0309-1

Keywords

Navigation