Skip to main content
Log in

Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel approach to the electrochemical determination of heavy metals in tap water using anodic stripping voltammetry was developed using screen-printed electrodes modified with gold films. After optimisation of the experimental conditions, the screen-printed electrodes modified with gold films displayed excellent linear behaviour in the examined concentration range from 2 to 16 µg L-1 mercury and lead in 50 mM HCl with a detection limit of 1.5 µg L-1 and 0.5 µg L-1 for mercury and lead, respectively. In order to decrease the working range down to less than 1 µg L-1, a preconcentration step based on the use of magnetic particles modified with thiols was introduced into the protocol. Applying optimum binding conditions, the assay using screen-printed electrodes modified with gold films displayed excellent linear behaviour in the concentration range 0.1 to 0.8 µg L-1 in 50 mM HCl. The detection limit after a 120 s deposition time for mercury and lead were 0.08 µg L-1 and 0.02 µg L-1, respectively. The method has been applied to the determination of mercury and lead traces in tap water

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. GibbsC R (1994) Simplified Testing for Lead and Copper in Drinking Water, Hatch-Lange Corporation.1994, Booklet No.19 http://pdf.directindustry.com/pdf/hach-lange/simplified-testing-for-lead-and-copper-in-drinking-water-booklet-no-19/5842-38293-_3.html

  2. Hight SC, Cheng J (2005) Determination of total mercury in seafood by cold vapor-atomic absorption spectroscopy (CVAAS) after microwave decomposition. Food Chem 91:557–570

    Article  CAS  Google Scholar 

  3. Ugo P, Zamperi S, Moretto LM, Paolucci D (2001) Determination of mercury in process and lagoon waters by inductively coupled plasma-mass spectrometric analysis after electrochemical preconcentration: comparison with anodic stripping at gold and polymer coated electrodes. Anal Chim Acta 434:291–300

    Article  CAS  Google Scholar 

  4. Boaventura GR, Barbosa AC, East GA (1997) Multi-vessel system for cold-vapour mercury generation: determination of mercury in hair and fish. Biol Trace Elem Res 60:153–161

    Article  CAS  Google Scholar 

  5. Kadara R, Tohill IE (2005) Resolving the copper interference effect on the stripping chronopotentiometric response of lead(II) obtained at bismuth film screen-printed electrode. Talanta 66:1089–1093

    Article  CAS  Google Scholar 

  6. EPA, Mercury in aqueous samples and extracts by anodic stripping voltammetry (ASV), Method 7472, http://www.epa.gov/mercury/information.htm#-techdocs

  7. http://www.palmsens.com

  8. Bonfil Y, Brand M, Kirowa-Eisner E (2000) Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal Chim Acta 424:65–76

    Article  CAS  Google Scholar 

  9. Stojko NY, Brainina KZ, Faller C, Henze G (1998) Stripping voltammetric determination of mercury at modified solid electrodes: I. Development of the modified electrodes. Anal Chim Acta 37:145–153

    Article  Google Scholar 

  10. Stojko NY, Faller C, Henze G, Brainina KZ (1999) Stripping voltammetric determination of mercury at modified solid electrodes: Determination of mercury traces using PDC/Au(III) modified electrodes. Anal Chim Acta 396:195–202

    Article  Google Scholar 

  11. Wang J, Tian B, Lu J, Wang J, Luo D, MacDonald D (1998) Remote electrochemical sensor for monitoring trace mercury. Electroanalysis 10:399–402

    Article  CAS  Google Scholar 

  12. Wu Y, Li NB, Luo HQ (2008) Electrochemical determination of Pb(II) at a gold electrode modified with a self-assembled monolayer of 2, 5-dimercapto-1, 3, 4-thiadiazole. Microchimica Acta 160:185–190

    Article  CAS  Google Scholar 

  13. Ürkmez I, Gökçel HI, Ertaş FN, Tural H (2009) Centrifugation: an efficient technique for preconcentration in anodic stripping voltammetric analysis of mercury using a gold film electrode. Microchimica Acta 167:225–230

    Article  Google Scholar 

  14. Takeuchi RM, Santos AL, Medeiros MJ, Stradiotto NR (2009) Copper determination in ethanol fuel samples by anodic stripping voltammetry at a gold microelectrode. Microchimica Acta 164:101–106

    Article  CAS  Google Scholar 

  15. Martínez-Paredes G, González-García MB, Costa-García A (2009) In situ electrochemical generation of gold nanostructured screen-printed carbon electrodes. Application to the detection of lead underpotential deposition. Electrochimica Acta 54(21):4801–4808

    Article  Google Scholar 

  16. Martínez-Paredes G, González-Garcaia MB, Costa-Garcia A (2009) Lead sensor using gold nanostructured screen-printed carbon electrodes as transducers. Electroanalysis 21(8):925–930

    Article  Google Scholar 

  17. Masawat P, Liawruangrath S, Slater JM (2003) Flow injection measurement of lead using mercury-free disposable gold-sputtered screen-printed carbon electrodes (SPCE). Sens Actuators, B: Chem 91(1–3):52–59

    Article  Google Scholar 

  18. Laschi S, Palchetti I, Mascini M (2006) Gold-based screen-printed sensor for detection of trace lead. Sens Actuators, B: Chem 114(1):460–465

    Article  Google Scholar 

  19. Wang J, Tian B (1993) Screen-printed electrodes for stripping measurements of trace mercury. Anal Chim Acta 274:1–6

    Article  CAS  Google Scholar 

  20. Gil EP, Ostapczuk P (1994) Potentiometric stripping determination of mercury(II), selenium(IV), copper(II) and lead(II) at a gold film electrode in water samples. Anal Chim Acta 293:55–65

    Article  CAS  Google Scholar 

  21. Bonfil Y, Brand M, Kirowa-Eisner E (2000) Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal Chim Acta 424:65–76

    Article  CAS  Google Scholar 

  22. Wang J (1985) Stripping analysis: principles, instrumentation and application florida. USA. Deerfield Beach.

  23. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19

    Article  CAS  Google Scholar 

  24. Willner I, Katz E (2003) Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew Chem Int Ed 42:4576

    Article  CAS  Google Scholar 

  25. Wang J, Kawde A, Erdem A, Salazar M (2001) Magnetic beadbased label-free electrochemical detection of DNA hybridization. Analyst 126:2020

    Article  CAS  Google Scholar 

  26. Wang J, Xu D, Polsky R (2002) Magnetically-induced solid-state electrochemical detection of DNA hybridization. J Am Chem Soc 124:4208

    Article  CAS  Google Scholar 

  27. Wang J, Kawde AN (2002) Magnetic-field stimulated DNA oxidation. Electrochem Commun 4:349

    Article  CAS  Google Scholar 

  28. Zhu NN, Zhang AP, He PG, Fang YZ (2004) DNA hybridization at magnetic nanoparticles with electrochemical stripping detection. Electroanalysis 16:1925

    Article  CAS  Google Scholar 

  29. Zhu XL, Han K, Li GX (2006) Magnetic nanoparticles applied in electrochemical detection of controllable DNA hybridization. Anal Chem 78:2447

    Article  CAS  Google Scholar 

  30. Willner I, Katz E (2006) Controlling chemical reactivity at solidsolution interfaces by means of hydrophobic magnetic nanoparticles. Langmuir 22:1409

    Article  CAS  Google Scholar 

  31. Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environmen Sci & Technol 41:5114–5119

    Article  CAS  Google Scholar 

  32. White BR, Stackhouse BT, Holcombe JA (2009) Magnetic γ-Fe2O3 nanoparticles coated with poly-L-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J Hazard Mater 161:848–853

    Article  CAS  Google Scholar 

  33. Metrohm (1996) Stripping Voltammetry analysis of Mercury, Application Bulletin No 96/4e, Herisau , Switzerland. http://www.metrohm.fr

  34. Riso RD, Waeles M, Monbet P, Chaumery CJ (2000) Measurements of trace concentrations of mercury in sea water by stripping chronopotentiometry with gold disk electrode: influence of copper. Anal Chim Acta 410:97–105

    Article  CAS  Google Scholar 

  35. Wang E, Sun W, Yang Y (1984) Potentiometric stripping analysis with a thin-film gold electrode for determination of copper, bismuth, antimony, and lead. Anal Chem 56:1903–1906

    Article  CAS  Google Scholar 

  36. Wang J, Tian B (1993) Mercury-free disposable lead sensors based on potentiometric stripping analysis at gold–coated screen-printed electrodes. Anal Chim 65:1529–1532

    Article  CAS  Google Scholar 

  37. Richter EM, Pedrotti JJ, Angnes L (2003) Square-wave quantification of lead in rainwater with disposable gold electrodes without removal of dissolved oxygen. Electroanalysis 15:1871–1877

    Article  CAS  Google Scholar 

  38. Noh MFM, Tothill IE (2006) Development and characterisation of disposable gold electrodes, and their use for lead(II) analysis. Analytical and Bioanalytical Chemistry 386(7-8):2095–2106

    Article  CAS  Google Scholar 

  39. Augelli MA, Munoz RAA, Richter EM, Junior AG, Angnes L (2005) Chronopotentiometric stripping analysis using gold electrodes, an efficient technique for mercury quantification in natural waters. Electroanalysis 17:755–761

    Article  CAS  Google Scholar 

  40. Watson CM, Dwyer DJ, Andle JC, Bruce AE, Bruce MRM (1999) Stripping analyses of mercury using gold electrodes: irreversible adsorption of mercury. Anal Chem 71:3181–3186

    Article  CAS  Google Scholar 

  41. Giacomino A, Abollino O, Malandrino M, Mentasti E (2008) Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode. Talanta 75:266

    CAS  Google Scholar 

  42. Welch C, Nekrassova O, Dai X, Hyde M, Compton RG (2004) Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes. Chem Phys Chem 5:1405–1410

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Amine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandil, A., Idrissi, L. & Amine, A. Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles. Microchim Acta 170, 299–305 (2010). https://doi.org/10.1007/s00604-010-0329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0329-x

Keywords

Navigation