Skip to main content
Log in

Fast detection of catechin in tea beverage using a poly-aspartic acid film based sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fast and convenient analytical method is presented for the determination of catechin. The electrochemical response of catechin in pH 6.8 phosphate buffer solution is significantly enhanced by immobilization of a film of poly-aspartic acid on the surface of the glassy carbon electrode. The enhancement mechanism and effect factors such as pH value, accumulation time and scan rate, were explored. Under optimum conditions, the differential pulse voltammetry peak current of catechin is proportional to the concentration in the range from 2.5 × 10−7 to 3.0 × 10−5 molL−1, with the detection limit of 7.2 × 10−8 molL−1. This method was also applied to the determination of catechin in tea beverage samples, and the recoveries were from 97.1% to 102.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okuda T, Kimura Y, Yoshida T, Hatano T, Okuda H, Arichi S (1983) Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Chem Pharm Bull 31:1625

    CAS  Google Scholar 

  2. Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85:1038

    Article  CAS  Google Scholar 

  3. Muramatsu K, Fukuyo M, Hara Y (1986) Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitaminol 32:613

    CAS  Google Scholar 

  4. Matsumoto N, Ishigaki F, Ishigaki A, Iwashina H, Hara Y (1993) Reduction of blood glucose levels by tea catechin. Biosci Biotech Biochem 57:525

    Article  CAS  Google Scholar 

  5. Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y, Tokimitsu I (2005) Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr 81:122

    CAS  Google Scholar 

  6. Yilmaz Y (2006) Novel uses of catechins in foods. Trends Food Technol 17:64

    Article  CAS  Google Scholar 

  7. Liang YR, Lu JL, Zhang LY, Wu S, Wu Y (2003) Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem 80(2):283

    Article  CAS  Google Scholar 

  8. Wang HF, Provan GJ, Helliwell K (2003) HPLC determination of catechins in tea leaves and tea extracts using relative response factors. Food Chem 81(3):307

    Article  CAS  Google Scholar 

  9. Masukawa Y, Matsui Y, Shimizu N, Kondou N, Endou H, Kuzukawa M, Hase T (2006) Determination of green tea catechins in human plasma using liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B 834:26

    CAS  Google Scholar 

  10. Iacopini P, Baldi M, Storchi P, Sebastiani L (2008) Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J Food Compos Anal 21:589

    Article  CAS  Google Scholar 

  11. Rodriguez-Delgado MA, Malovaná S, Pérez JP, Borges T, Montelongo GFJ (2001) Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J Chromatogr A 912:249

    Article  CAS  Google Scholar 

  12. Zhang MH, Luypaert J, Femández PJA, Xu QS, Massart DL (2004) Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration. Talanta 62(1):25

    Article  CAS  Google Scholar 

  13. Nagaoka H, Toyoshima S, Takeda K (2002) Spectrofluorometric determination of catechins with 1, 2-diphenylethylenediamine. Anal Sci 18:951

    Article  CAS  Google Scholar 

  14. Ozyurt D, Demirata B, Apak R (2007) Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement. Talanta 71:1155

    Article  CAS  Google Scholar 

  15. El-Hady DA, El-Maali NA (2008) Determination of catechin isomers in human plasma subsequent to green tea ingestion using chiral capillary electrophoresis with a high-sensitivity cell. Talanta 76:138

    Article  Google Scholar 

  16. Tsukagoshi K, Taniguchi T, Nakajima R (2007) Analysis of antioxidants using a capillary electrophoresis with chemiluminescence detection system. Anal Chim Acta 589:66

    Article  CAS  Google Scholar 

  17. Chen Z, Zhang L, Chen G (2008) Microwave-assisted extraction followed by capillary electrophoresis-amperometric detection for the determination of antioxidant constituents in folium eriobotryae. J Chromatogr A 1193:178

    Article  CAS  Google Scholar 

  18. Yang B, Arai K, Kusu F (2000) Determination of catechins in human urine subsequent to tea ingestion by high-performance liquid chromatography with electrochemical detection. Anal Biochem 283:77

    Article  CAS  Google Scholar 

  19. Mitsuaki S, Michiko T, Masazumi S, Masakuni D, Toshio M, Mari MY (2001) Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection. Analyst 126:816

    Article  Google Scholar 

  20. Jarosz-Wilkolazka A, Ruzgas T, Gorton L (2004) Use of laccase-modified electrode for amperometric detection of plant flavonoids. Enzyme Microb Technol 35:238

    Article  CAS  Google Scholar 

  21. Wu J, Wang H, Fu L, Chen Z, Jiang JH, Shen G, Yu R (2005) Detection of catechin based on its electrochemical autoxidation. Talanta 65:511

    Article  CAS  Google Scholar 

  22. El-Hady D, El-Maali N (2008) Selective square wave voltammetric determination of (+)-catechin in commercial tea samples using beta-cyclodextrin modified carbon paste electrode. Microchim Acta 161:225

    Article  CAS  Google Scholar 

  23. El-Hady DA (2007) Selective and sensitive hydroxypropyl-beta-cyclodextrin based sensor for simple monitoring of (+)-catechin in some commercial drinks and biological fluids. Anal Chim Acta 593:178

    Article  Google Scholar 

  24. Rahman MA, Noh HB, Shim YB (2008) Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor. Anal Chem 80:8020

    Article  CAS  Google Scholar 

  25. Moccelini SK, Fernandes SC, Camargo TP, Neves A, Vieira IC (2009) Self-assembled monolayer of nickel(II) complex and thiol on gold electrode for the determination of catechin. Talanta 78:1063

    Article  CAS  Google Scholar 

  26. Yang LJ, Tang C, Xiong HY, Zhang XH, Wang SF (2009) Electrochemical properties of catechin at a single-walled carbon nanotubes-cetylramethylammonium bromide modified electrode. Bioelectrochemistry 75:158

    Article  CAS  Google Scholar 

  27. Li CY (2006) Voltammetric determination of tyrosine based on an l-serine polymer film electrode. Colloid Surface B 50:147

    Article  CAS  Google Scholar 

  28. Alison JD, Azmi BM (1999) Suppression of protein adsorption at glassy carbon electrodes covalently modified with tetraethylene glycol diamine. Electroanal 11(6):418

    Article  Google Scholar 

  29. Zhang L, Lin XQ (2005) Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid. Anal Bioanal Chem 382:1669

    Article  CAS  Google Scholar 

  30. Wang L, Huang PF, Wang HJ, Bai JY, Zhang LY, Zhao YQ (2007) Covalent modification of glassy carbon electrode with aspartic acid for simultaneous determination of hydroquinone and catechol. Annali di Chimica 97:395

    Article  Google Scholar 

  31. Randall SD, Mankit H, James WA, Marc DP (1994) Electrochemical oxidation of amine-containing compounds: a route to the surface modification of glassy carbon electrodes. Langmuir 10:1306

    Article  Google Scholar 

  32. Du D, Wang SF, Huang CB (2001) Electrocatalysis of l-cysteine modified gold electrode to o-benzenediol and its application. Chin J Instr Anal 20(5):18

    CAS  Google Scholar 

  33. Yu YY, Shao M, Zhang SL, Zhang HS (2006) Determination of tea polyphenols by flow injection with chemiluminescence analysis. Chin J Anal Labor 25(4):101

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanghai (No: 09ZR1434100) and the Nano-Foundation of Shanghai (No: 0952nm00800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XG., Li, J. & Fan, YJ. Fast detection of catechin in tea beverage using a poly-aspartic acid film based sensor. Microchim Acta 169, 173–179 (2010). https://doi.org/10.1007/s00604-010-0335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0335-z

Keywords

Navigation