Skip to main content
Log in

Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive electrochemical sensor for the simultaneous determination of catechol (CC) and hydroquinone (HQ) was fabricated by electrodeposition of gold nanoparticles onto carbon nanofiber film pre-cast on an Au electrode. Both CC and HQ cause a pair of quasi-reversible and well-defined redox peaks at the modified electrode in pH 7.0 solution. Simultaneously, the oxidation peak potentials of CC and HQ become separated by 112 mV. When simultaneously changing the concentrations of both CC and HQ, the response is linear between 9.0 μM and 1.50 mM. In the presence of 0.15 mM of the respective isomer, the electrode gives a linear response in the range from 5.0 to 350 μM, and from 9.0 to 500 μM for CC and HQ, respectively, and detection limits are 0.36 and 0.86 μM. The method was successfully examined for real sample analysis with high selectivity and sensitivity.

Highly sensitive and simultaneous determination of catechol and hydroquinone was realized at the GNPs/CNF/Au electrode (d), and its peak currents had nearly two times higher than that of the CNF/Au electrode(c), while only one oxidation peak was observed for both analytes at the bare Au electrode (a) and GNPs/Au electrode (b)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Terashima C, Rao TN, Sarada BV, Tryk DA, Fujishima A (2002) Electrochemical oxidation of chlorphenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection. Anal Chem 74:895–902

    Article  CAS  Google Scholar 

  2. Xiao WX, Dan X (2007) Aminopyrene functionalized mesoporous silica for the selective determination of resorcinol. Talanta 72:1288–1292

    Article  CAS  Google Scholar 

  3. Xie TY, Liu QW, Shi YR, Liu QY (2006) Simultaneous determination of positional isomers of benzenediols by capilary zone electrophoresis with square wave amperometric detection. J Chromatogr A 1109:317–321

    Article  CAS  Google Scholar 

  4. Cui H, He CX, Zhao GW (1999) Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. J Chromatogr A 855:171–179

    Article  CAS  Google Scholar 

  5. Garcia-Mesa JA, Mateos R (2007) Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a pH-based flow-injection analysis system. J Agric Food Chem 55:3863–3868

    Article  CAS  Google Scholar 

  6. Pistonesi MF, Nezio MSD, Centurión ME, Palomeque ME, Lista AG, Band BSF (2006) Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69:1265–1268

    Article  CAS  Google Scholar 

  7. Qi HL, Zhang CX (2005) Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17:832–838

    Article  CAS  Google Scholar 

  8. Zhao DM, Zhang XH, Feng LJ, Li J, Wang SF (2009) Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloids Surf, B 74:317–321

    Article  CAS  Google Scholar 

  9. Zhang H, Zhao JS, Liu HT, Liu RM, Wang HS, Liu JF (2010) Electrochemical determinationof diphenols and their mixtures at the multiwall carbon nanotubes/poly (3-methylthiophene) modified glassy carbon electrode. Microchim Acta 169:277–282

    Article  CAS  Google Scholar 

  10. Wang L, Huang P, Bai J, Wang H, Zhang L, Zhao Y (2007) Direct simultaneous electrochemical determination of hydroquinone and catechol at a poly(glutamic acid) modified glassy carbon electrode. Int J Electrochem Sci 2:123–132

    Google Scholar 

  11. Wang L, Huang PF, Bai JY, Wang HJ, Zhang LY, Zhao YQ (2007) Covalent modification of a glassy carbon electrode with penicillamine for simultaneous determination of hydroquinone and catechol. Microchim Acta 158:151–157

    Article  CAS  Google Scholar 

  12. Wang L, Huang PF, Wang HJ, Bai JY, Zhang LY, Zhao YQ (2007) Covalent modification of glassy carbon electrode with aspartic acid for simultaneous determination of hydroquinone and catechol. Ann Chim 97:395–404

    Article  Google Scholar 

  13. Ghanem MA (2007) Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode. Electrochem Commun 9:2501–2506

    Article  CAS  Google Scholar 

  14. Yu JJ, Du W, Zhao FQ, Zeng BZ (2009) High sensitive simultaneous determination of catechol and hydroquinone at mesoporous carbon CMK-3 electrode in comparison with multi-walled carbon nanotubes and Vulcan XC-72 carbon electrodes. Electrochim Acta 54:984–988

    Article  CAS  Google Scholar 

  15. Ahammad AJS, Sarker S, Rahman MA, Leea J-J (2010) Simultaneous determination of hydroquinone and catechol at an activated glassy carbon electrode. Electroanalysis 22:694–700

    Article  CAS  Google Scholar 

  16. Zhang MG, Gorski W (2005) Electrochemical sensing based on redox mediation at carbon nanotubes. Anal Chem 77:3960–3965

    Article  CAS  Google Scholar 

  17. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239

    Article  CAS  Google Scholar 

  18. Weeks ML, Rahman T, Frymier PD, Islam SK, McKnight TE (2008) A reagentless enzymatic amperometric biosensor using vertically aligned carbon nanofibers (VACNF). Sensor Actuator B 133:53–59

    Article  Google Scholar 

  19. Werner P, Verdejo R, Wöllecke F, Altstädt V, Sandler JKW, Shaffer MSP (2005) Carbon nanofibers allow foaming of semicrystalline poly(ether ether ketone). Adv Mater 17:2864–2869

    Article  CAS  Google Scholar 

  20. Arvinte A, Valentini F, Radoi A, Arduini F, Tamburri E, Rotariu L, Palleschi G, Bala C (2007) The NADH electrochemical detection performed at carbon nanofibers modified glassy carbon electrode. Electroanalysis 19:1455–1459

    Article  CAS  Google Scholar 

  21. Rassaei L, Sillanpaa M, Bonne MJ, Marken F (2007) Carbon nanofiber–polystyrene composite electrodes for electroanalytical processes. Electroanalysis 19:1461–1466

    Article  CAS  Google Scholar 

  22. Daniel MC, Astruc D (2004) Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  23. Li HQ, Liu RL, Zhao DY, Xia YY (2007) Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 45:2628–2635

    Article  CAS  Google Scholar 

  24. Harvey D (2000) Modern analytical chemistry, 1st edn. Mc Graw-Hill, New York, p 151

    Google Scholar 

  25. Ding YP, Liu WL, Wu QS, Wang XG (2005) Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J Electroanal Chem 575:275–280

    Article  CAS  Google Scholar 

  26. Li MG, Ni F, Wang YL, Xu SD, Zhang DD, Chen SH, Wang L (2009) Sensitive and facile determination of catechol and hydroquinone simultaneously under coexistence of resorcinol with a Zn/Al layered double hydroxide film modified glassy carbon electrode. Electroanalysis 21:1521–1526

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the supports of the National Natural Science Foundation of China (No. 20775047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liang or Maotian Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The molecule structures of catechol and hydroquinone). (DOC 30.5 kb)

Fig. S2

CV of CC in 0.1 M phosphate buffer solution (pH 7.0) containing 4 mM analyte at bare Au electrode (a), GNPs/Au electrode (b), CNF/Au electrode (c) and GNPs/CNF/Au electrode (d). (DOC 95 kb)

Fig. S3

CV of HQ in 0.1 M phosphate buffer solution (pH 7.0) containing 4 mM analyte at bare Au electrode (a), GNPs/Au electrode (b), CNF/Au electrode (c) and GNPs/CNF/Au electrode (d). (DOC 93 kb)

Fig. S4

DPV of increasing concentrations of CC and HQ in phosphate buffer solution (pH 7.0): (a) 9.0, (b) 50, (c) 150, (d) 250, (e) 550, (f) 820, (g) 1500 μM. (DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, Z., Zhou, Y., Liu, Q. et al. Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles. Microchim Acta 173, 119–125 (2011). https://doi.org/10.1007/s00604-010-0530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0530-y

Keywords

Navigation