Skip to main content
Log in

Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel sensor for hydrogen peroxide (H2O2) was fabricated using β-MnO2 nanorods on a glassy carbon electrode (GCE). The nanorods were obtained by a hydrothermal method and characterized by scanning electron microscopy and X-ray diffraction. Cyclic voltammetry was used to evaluate the electrochemical performance of the modified GCE. The sensor exhibits excellent catalytic activity toward the oxidation of H2O2 and displays a rather wide linear range (from 2.5 μM to 42.9 mM), high sensitivity (21.74 μA·mM−1), a low detection limit (2.45 μM at an S/N of 3), and a response time of <5 s.

A simple hydrothermal method was developed to prepare mono-dispersed single-crystal β–MnO2 nanorods, which was tested successfully for the electrocatalytic determination of H2O2 in aqueous solution. The resulting sensor exhibited wide linear range, high sensitivity, fast response, low detection limit and strong anti-interference ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Y, Zhang J, Zhu H, Yang F, Yang X (2010) Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing. Electrochim Acta 55:5123–5128

    Article  CAS  Google Scholar 

  2. Yang YJ, Hu S (2010) Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide. Electrochim Acta 55:3471–3476

    Article  CAS  Google Scholar 

  3. Xuan J, Jiang L-P, Zhu J-J (2010) Nonenzymatic hydrogen peroxide sensor based on three-dimensional ordered macroporous gold film modified electrode. Chin J Anal Chem 38:513–516

    Article  CAS  Google Scholar 

  4. Lin K-C, Tsai T-H, Chen S-M (2010) Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film. Biosens Bioelectron 26:608–614

    Article  CAS  Google Scholar 

  5. Lobnik A, Čajlaković M (2001) Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sens Actuat B: Chem 74:194–199

    Article  Google Scholar 

  6. Kriz K, Anderlund M, Kriz D (2001) Real-time detection of L-ascorbic acid and hydrogen peroxide in crude food samples employing a reversed sequential differential measuring technique of the SIRE-technology based biosensor. Biosens Bioelectron 16:363–369

    Article  CAS  Google Scholar 

  7. Deng ZF, Zhang HW, Jiao YZ (2009) Hydrogen peroxide biosensor based on cytochrome c/nano-ZnO. Chin J Anal Chem 37:613–616

    CAS  Google Scholar 

  8. Matos RC, Pedrotti JJ, Angnes L (2001) Flow-injection system with enzyme reactor for differential amperometric determination of hydrogen peroxide in rainwater. Anal Chim Acta 441:73–79

    Article  CAS  Google Scholar 

  9. Barrington DJ, Ghadouani A (2008) Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ Sci Technol 42:8916–8921

    Article  CAS  Google Scholar 

  10. Bui M-PN, Pham X-H, Han KN, Li CA, Kim YS, Seong GH (2010) Electrocatalytic reduction of hydrogen peroxide by silver particles patterned on single-walled carbon nanotubes. Sens Actuat B: Chem 150:436–441

    Article  Google Scholar 

  11. Hurdis EC, Romeyn H Jr (1954) Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal Chem 26:320

    Article  CAS  Google Scholar 

  12. Brestovisky A, KirowaEisner E, Osteryoung J (1983) Direct and titrimetric determination of hydrogen peroxide by reverse pulse polarography. Anal Chem 55:2063–2066

    Article  CAS  Google Scholar 

  13. Meloan CE, Mauck M, Huffman C (1961) Spectrophotometric determination of traces of hydrogen peroxide. Anal Chem 33:104–106

    Article  CAS  Google Scholar 

  14. Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K (1998) Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1,10-phenanthroline. Environ Sci Technol 32:3821–3824

    Article  CAS  Google Scholar 

  15. Zhang L-S, Wong GTF (1999) Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method. Talanta 48:1031–1038

    Article  CAS  Google Scholar 

  16. Hool K, Nieman TA (1988) Immobilized luminol chemiluminescence reagent system for hydrogen peroxide determinations in flowing streams. Anal Chem 60:834–837

    Article  CAS  Google Scholar 

  17. Price D, Worsfold PJ, Montoura RFC (1994) Determination of hydrogen peroxide in sea water by flow-injection analysis with chemiluminescence detection. Anal Chim Acta 298:121–128

    Article  CAS  Google Scholar 

  18. Li Y, Zhang J-J, Xuan J, Jiang L-P, Zhu J-J (2010) Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem Commun 12:777–780

    Article  CAS  Google Scholar 

  19. Gu A, Wang G, Gu J, Zhang X, Fang B (2010) An unusual H2O2 electrochemical sensor based on Ni(OH)2 nanoplates grown on Cu substrate. Electrochim Acta 55:7182–7187

    Article  CAS  Google Scholar 

  20. Cui K, Song Y, Yao Y, Huang Z, Wang L (2008) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun 10:663–667

    Article  CAS  Google Scholar 

  21. Song J, Xu J, Zhao P, Lu L, Bao J (2011) A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon. Microchim Acta 172:117–123

    Article  CAS  Google Scholar 

  22. Xu J, Liu C, Wu Z (2011) Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film. Microchim Acta 172:425–430

    Article  CAS  Google Scholar 

  23. Xu S, Zhang X, Wan T, Zhang C (2011) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes. Microchim Acta 172:199–205

    Article  CAS  Google Scholar 

  24. Li L, Xu S, Du Z, Gao Y, Li J, Wang T (2010) Electrografted poly(N-mercaptoethyl acrylamide) and Au nanoparticles-based organic/inorganic film: a platform for the high-performance electrochemical biosensors. Chem Asian J 5:919–924

    Article  CAS  Google Scholar 

  25. Zhang L (2008) Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Biosens Bioelectron 23:1610–1615

    Article  CAS  Google Scholar 

  26. Huang J, Zheng J, Sheng Q (2010) Direct electrochemistry of myoglobin based on electrodeposition of Pd nanoparticles with carbon ionic liquid electrode as basic electrode. Microchim Acta 173:157–163

    Article  Google Scholar 

  27. Zhang L, Li H, Ni Y, Li J, Liao K, Zhao G (2009) Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem Commun 11:812–815

    Article  CAS  Google Scholar 

  28. Song Y-Y, Gao Z-D, Schmuki P (2011) Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: a refreshable platform for methanol electrooxidation. Electrochem Commun 13:290–293

    Article  CAS  Google Scholar 

  29. Song YY, Jia WZ, Li Y, Xia XH, Wang QJ, Zhao JW, Yan YD (2007) Synthesis and patterning of prussian blue nanostructures on silicon wafer via galvanic displacement reaction. Adv Funct Mater 17:2808–2814

    Article  CAS  Google Scholar 

  30. Roche I, Chaînet E, Chatenet M, Vondrák J (2006) Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (orr) in alkaline medium: physical characterizations and ORR mechanism. J Phys Chem C 111:1434–1443

    Article  Google Scholar 

  31. Lima FHB, Calegaro ML, Ticianelli EA (2007) Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochim Acta 52:3732–3738

    Article  CAS  Google Scholar 

  32. Liu Z, Xing Y, Chen C-H, Zhao L, Suib SL (2008) Framework doping of indium in manganese oxide materials: synthesis, characterization, and electrocatalytic reduction of oxygen. Chem Mater 20:2069–2071

    Article  CAS  Google Scholar 

  33. Shanmugam S, Gedanken A (2006) MnO octahedral nanocrystals and MnO@C core-shell composites: synthesis, characterization, and electrocatalytic properties. J Phys Chem B 110:24486–24491

    Article  CAS  Google Scholar 

  34. Crisostomo VMB, Ngala JK, Alia S, Dobley A, Morein C, Chen C-H, Shen X, Suib SL (2007) New synthetic route, characterization, and electrocatalytic activity of nanosized manganite. Chem Mater 19:1832–1839

    Article  CAS  Google Scholar 

  35. Gong K, Yu P, Su L, Xiong S, Mao L (2007) Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J Phys Chem C 111:1882–1887

    Article  CAS  Google Scholar 

  36. Bai Y-H, Zhang H, Xu J-J, Chen H-Y (2008) Relationship between nanostructure and electrochemical/biosensing properties of MnO2 nanomaterials for H2O2/choline. J Phys Chem C 112:18984–18990

    CAS  Google Scholar 

  37. Yu P, Zhang X, Chen Y, Ma Y (2010) Self-template route to MnO2 hollow structures for supercapacitors. Mater Lett 64:1480–1482

    Article  CAS  Google Scholar 

  38. Wang X, Ni S, Zhou G, Sun X, Yang F, Wang J, He D (2010) Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties. Mater Lett 64:1496–1498

    Article  CAS  Google Scholar 

  39. Xiao W, Wang D, Lou XW (2010) Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C 114:1694–1700

    Article  CAS  Google Scholar 

  40. Bai Y-H, Xu J-J, Chen H-Y (2009) Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens Bioelectron 24:2985–2990

    Article  CAS  Google Scholar 

  41. Xu J-J, Luo X-L, Du Y, Chen H-Y (2004) Application of MnO2 nanoparticles as an eliminator of ascorbate interference to amperometric glucose biosensors. Electrochem Commun 6:1169–1173

    Article  CAS  Google Scholar 

  42. Xu J-J, Feng J-J, Zhong X, Chen H-Y (2008) Low-potential detection of glucose with a biosensor based on the immobilization of glucose oxidase on polymer/manganese oxide layered nanocomposite. Electroanal 20:507–512

    Article  CAS  Google Scholar 

  43. Li L, Du Z, Liu S, Hao Q, Wang Y, Li Q, Wang T (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641

    Article  CAS  Google Scholar 

  44. Bai Y-H, Du Y, Xu J-J, Chen H-Y (2007) Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem Commun 9:2611–2616

    Article  CAS  Google Scholar 

  45. Zhang W, Wang H, Yang Z, Wang F (2007) Promotion of H2O2 decomposition activity over β-MnO2 nanorod catalysts. Colloid Surf A 304:60–66

    Article  CAS  Google Scholar 

  46. Feng J-J, Zhang P-P, Wang A-J, Zhang Y, Dong W-J, Chen J-R (2011) One-pot hydrothermal synthesis of uniform β-MnO2 nanorods for nitrite sensing. J Colloid Interf Sci 359:1–8

    Article  CAS  Google Scholar 

  47. Yang Z, Zhou C, Zhang W, Li H, Chen M (2010) β-MnO2 nanorods: a new and efficient catalyst for isoamyl acetate synthesis. Colloid Surf A 356:134–139

    Article  CAS  Google Scholar 

  48. Zhang W, Yang Z, Wang X, Zhang Y, Wen X, Yang S (2006) Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catal Commun 7:408–412

    Article  Google Scholar 

  49. Xu B, Ye M-L, Yu Y-X, Zhang W-D (2010) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. Anal Chim Acta 674:20–26

    Article  CAS  Google Scholar 

  50. Wang H, Guan R, Fan C, Zhu D, Li G (2002) A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. Sens Actuat B: Chem 84:214–218

    Article  Google Scholar 

  51. Gan X, Liu T, Zhong J, Liu X, Li G (2004) Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. Chembiochem 5:1686–1691

    Article  CAS  Google Scholar 

  52. Yao S, Yuan S, Xu J, Wang Y, Luo J, Hu S (2006) A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite. Appl Clay Sci 33:35–42

    Article  CAS  Google Scholar 

  53. Yao S, Xu J, Wang Y, Chen X, Xu Y, Hu S (2006) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta 557:78–84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Nos. 20805011, 20905021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu-Ju Feng.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material

(DOC 336 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, AJ., Zhang, PP., Li, YF. et al. Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods. Microchim Acta 175, 31–37 (2011). https://doi.org/10.1007/s00604-011-0650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0650-z

Keywords

Navigation