Skip to main content
Log in

Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(II) oxides and graphene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a stable and sensitive nonenzymatic glucose sensor by modifying a glassy carbon electrode (GCE) with a composite incorporating nickel(II) oxides and reduced graphene. The oxides were generated by directly electrodepositing nickel on the GCE with a graphene modifier using a multi-potential pulse process, and then oxidizing nickel to nickel(II) oxides by potential cycling. In comparison to the conventional nickel(II) oxides-modified GCE, this new nickel(II) oxides-graphene modified GCE (NiO-GR/GCE) has an about 1.5 times larger current response toward the nonenzymatic oxidation of glucose in alkaline media. The response to glucose is linear in the 20 μM to 4.5 mM concentration range. The limit of detection is 5 μM (at a S/N of 3), and the response time is very short (<3 s). Other beneficial features include selectivity, reproducibility and stability. A comparison was performed on the determination of glucose in commercial red wines by high-performance liquid chromatography (HPLC) and revealed the promising aspects of this sensor with respect to the determination of glucose in real samples.

A stable and sensitive nonenzymatic glucose sensor is developed by preparing the nickel(II) oxides-reduced graphene nanocomposite modified glassy carbon electrode (NiO-GR/GCE), and then used to detect the glucose contents in the commercial red wines. This NiO-GR/GCE also has a high selectivity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ge L, Zhao YS, Mo T, Li JR, Li P (2012) Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control 26:188–193

    Article  CAS  Google Scholar 

  2. Goriushkina TB, Soldatkin AP, Dzyadevych SV (2009) Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J Agric Food Chem 57:6528–6535

    Article  CAS  Google Scholar 

  3. Wei Q, Yan HX, Duan L, Cui Y, Yang Y, Li JB (2009) Glucose-sensitive microcapsules from glutaraldehyde cross-kinked hemoglobin and glucose oxidase. Biomacromolecules 10:1212–1216

    Article  Google Scholar 

  4. Yang K, Shen GS, Wang H, Ou XM, Zhang XH, Lee CS, Lee ST (2009) ZnO nanotube arrays as biosensors for glucose. J Phys Chem C 113:20169–20172

    Article  CAS  Google Scholar 

  5. Ozdemir C, Yeni F, Odaci D, Timur S (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119:380–385

    Article  CAS  Google Scholar 

  6. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185

    Article  CAS  Google Scholar 

  7. Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25:218–223

    Article  CAS  Google Scholar 

  8. Vassilyev YB, Khozova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. J Electroanal Chem 196:105–125

    Article  Google Scholar 

  9. Zhou YG, Yang S, Qian QY, Xia XH (2009) Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem Commun 11:216–219

    Article  CAS  Google Scholar 

  10. Meng L, Jin J, Yang GX, Lu TH, Zhang H, Cai CX (2009) Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280

    Article  CAS  Google Scholar 

  11. Tashkhourian J, Hormozi-Nezhad MR, Khodaveisi J, Dashti R (2011) A novel photometric glucose biosensor based on decolorizing of silver nanoparticles. Sens Actuators B 158:185–189

    Article  CAS  Google Scholar 

  12. Lee YJ, Park JY (2011) A coral-like macroporous gold-platinum hybrid 3D electrode for enzyme-free glucose detection. Sens Actuators B 155:134–139

    Article  Google Scholar 

  13. Cao F, Guo S, Ma H, Shan D, Yang S, Gong J (2011) Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance. Biosens Bioelectron 26:2756–2760

    Article  CAS  Google Scholar 

  14. Mu Y, Jia D, He Y, Miao Y, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952

    Article  CAS  Google Scholar 

  15. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta. doi:10.1007/s00604-012-0923-1

  16. Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407

    Article  CAS  Google Scholar 

  17. Shamsipur M, Najafi M, Hosseini MRM (2010) Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 77:120–124

    Article  CAS  Google Scholar 

  18. Shan CS, Yang HF, Han DX, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074

    Article  CAS  Google Scholar 

  19. Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201

    Article  CAS  Google Scholar 

  20. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  21. Liu YX, Dong XC, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307

    Article  CAS  Google Scholar 

  22. Pérez-López B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  23. Qiao N, Zheng J (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene. Microchim Acta 177:103–109

    Article  CAS  Google Scholar 

  24. Lv W, Jin FM, Guo Q, Yang QH, Kang F (2012) DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochim Acta 73:129–135

    Article  CAS  Google Scholar 

  25. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  26. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  27. Chen XX, Eckhard K, Zhou M, Bron M, Schumann W (2009) Electrocatalytic activity of spots of electrodeposited nobel-metal catalysts on carbon nanotubes modified glassy carbon. Anal Chem 81:7597–7603

    Article  CAS  Google Scholar 

  28. Nan J, Yang Y, Lin Z (2006) In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution. Electrochim Acta 51:4873–4879

    Article  CAS  Google Scholar 

  29. Casella IG, Desimom E, Cataldi TRI (1991) Study of nickel-catalysed glassy carbon electrode for detection of carbohydrates in liquid chromatography and flow-injection analysis. Anal Chim Acta 248:117–125

    Article  CAS  Google Scholar 

  30. Casella IG, Catald TRI, Salvi AM, Desimoni E (1993) Electrocatalytic oxidation and liquid chromatographic detection of aliphatic alcohols at nickel-based glassy carbon modified electrode. Anal Chem 85:3143–3150

    Article  Google Scholar 

  31. Ndamanisha JC, Guo L (2009) Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode. Bioelectrochemistry 77:60–63

    Article  CAS  Google Scholar 

  32. Holt-Hindle P, Nigro S, Asmussen M, Chen A (2008) Amperometric glucose sensor based on platinum-iridium nanomaterials. Electrochem Commun 10:1438–1441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21175047 and 21147003) and the Scientific Research Foundation of Graduate School of South China Normal University (2012kyjj217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Nan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Jiao, Q., Zhang, C. et al. Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(II) oxides and graphene. Microchim Acta 180, 477–483 (2013). https://doi.org/10.1007/s00604-013-0955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0955-1

Keywords

Navigation