Skip to main content
Log in

Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Surface enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical tools in recent years. Due to advantageous features such as sensitivity, specificity, ease of operation and rapidity, SERS is particularly well suited for environmental analysis. We summarize here some considerations with respect to the detection of pollutants by SERS and provide an overview on recent achievements in the determination of organic pollutants, heavy metal ions, and pathogens. Following an introduction into the topic and considering aspects of sensitivity, selectivity, reproducibility and portability, we are summarizing applications of SERS in the detection of pollutants, with sections on organic pollutants (pesticides, PAHs and PCBs, explosives), on heavy metal ions, and on pathogens. In addition, we discuss current challenges and give an outlook on applications of SERS in environmental analysis. Contains 174 references.

The application of surface enhanced Raman spectroscopy (SERS) for the detection of environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Koeber R, Bayona JM, Niessner R (1999) Determination of benzo[a]pyrene diones in air particulate matter with liquid chromatography mass spectrometry. Environ Sci Technol 33(10):1522–1558

    Google Scholar 

  2. Li CW, Benjamin MM, Korshin GV (2000) Use of UV spectroscopy to characterize the reaction between NOM and free chlorine. Environ Sci Technol 34(12):2570–2575

    CAS  Google Scholar 

  3. Hilmi A, Luong JHT (2000) Micromachined electrophoresis chips with electrochemical detectors for analysis of explosive compounds in soil and groundwater. Environ Sci Technol 34(14):3046–3050

    CAS  Google Scholar 

  4. Jokerst JC, Emory JM, Henry CS (2012) Advances in microfluidics for environmental analysis. Analyst 137:24–34

    CAS  Google Scholar 

  5. Liu YY, Su GX, Zhang B, Jiang GB, Yan B (2011) Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst 136:872–877

    CAS  Google Scholar 

  6. Zheng YQ, Yang CZ, Pu WH, Zhang JD (2009) Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta 166:21–26

    CAS  Google Scholar 

  7. Shang Y, Qi L, Wu FY (2012) Functionalized manganese-doped zinc sulfide quantum dot-based fluorescent probe for zinc ion. Microchim Acta 177:333–339

    CAS  Google Scholar 

  8. Liu M, Zhao HM, Chen S, Yu HT, Quan X (2012) Colloidal graphene as a transducer in homogeneous fluorescence-based immunosensor for rapid and sensitive analysis of microcystin-LR. Environ Sci Technol 46:12567–12574

    CAS  Google Scholar 

  9. Halvorson RA, Vikesland PJ (2010) Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ Sci Technol 44(20):7749–7755

    CAS  Google Scholar 

  10. Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964

    CAS  Google Scholar 

  11. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    CAS  Google Scholar 

  12. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfa Electrochem 84(1):1–20

    CAS  Google Scholar 

  13. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217

    CAS  Google Scholar 

  14. Gersten JI, Birke RL, Lombardi JR (1979) Theory of enhanced light scattering from molecules adsrobed at the metal-solution interface. Phys Rev Lett 43:147–150

    CAS  Google Scholar 

  15. Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    CAS  Google Scholar 

  16. Pieczonka NPW, Aroca RF (2008) Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev 37:946–954

    CAS  Google Scholar 

  17. Zhang XY, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489

    CAS  Google Scholar 

  18. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    CAS  Google Scholar 

  19. Alvarez-Puebla RA, Liz-Marzán LM (2012) Traps and cages for universal SERS detection. Chem Soc Rev 41:43–51

    CAS  Google Scholar 

  20. Wood BR, Heraud P, Stojkovic S, Morrison D, Beardall J, Naughton DM (2005) A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells. Anal Chem 77:4955–4961

    CAS  Google Scholar 

  21. Alvarez-Puebla RA, Liz-Marzán LM (2010) Environmental applications of plasmon assisted Raman scattering. Energy Environ Sci 3:1011–1017

    CAS  Google Scholar 

  22. Fan MK, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25

    CAS  Google Scholar 

  23. Liang HY, Li ZP, Wang WZ, Wu YS, Xu HX (2009) Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering. Adv Mater 21:4614–4618

    CAS  Google Scholar 

  24. Sun YH, Liu K, Miao J, Wang ZY, Tian BZ, Zhang LN, Li QQ, Fan SS, Jiang KL (2010) Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett 10:1747–1753

    CAS  Google Scholar 

  25. Wigginton KR, Vikesland PJ (2010) Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst 135:1320–1326

    Google Scholar 

  26. Li D, Li DW, Fossey JS, Long YT (2010) Portable surface-enhanced Raman scattering sensor for rapid detection of aniline and phenol derivatives by on-site electrostatic preconcentration. Anal Chem 82:9299–9305

    CAS  Google Scholar 

  27. Li YT, Qu LL, Li DW, Song QX, Long YT (2013) Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Bionsens Bioelectron 43:94–100

    CAS  Google Scholar 

  28. Chen K, Vo-Dinh KC, Yan F, Wabuyele MB, Vo-Dinh T (2006) Direct identification of alizarin and lac dye on painting fragments using surface-enhanced Raman scattering. Anal Chim Acta 569:234–237

    CAS  Google Scholar 

  29. Jones CL, Bantz KC, Haynes CL (2009) Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 394:303–311

    CAS  Google Scholar 

  30. Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2009) Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering. Anal Chem 81:953–960

    CAS  Google Scholar 

  31. He LL, Rodda T, Haynes CL, Deschaines T, Strother T, Diez-Gonzalez F, Labuza TP (2011) Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. Anal Chem 83:1510–1513

    CAS  Google Scholar 

  32. Han DH, Lim SY, Kim BJ, Piao LL, Chung TD (2010) Mercury(II) detection by SERS based on a single gold microshell. Chem Commun 46:5587–5589

    CAS  Google Scholar 

  33. Lu G, Li H, Liusman C, Yin ZY, Wu SX, Zhang H (2011) Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem Sci 2:1817–1821

    CAS  Google Scholar 

  34. Roldán ML, Corrado G, Francioso O, Sanchez-Cortes S (2011) Interaction of soil humic acids with herbicide paraquat analyzed by surface-enhanced Raman scattering and fluorescence spectroscopy on silver plasmonic nanoparticles. Anal Chim Acta 699:87–95

    Google Scholar 

  35. Li DW, Qu LL, Zhai WL, Xue JQ, Fossey JS, Long YT (2011) Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ Sci 45:4046–4052

    CAS  Google Scholar 

  36. Bompart M, Wilde YD, Haupt K (2010) Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Adv Mater 22:2343–2348

    CAS  Google Scholar 

  37. Xue JQ, Li DW, Qu LL, Long YT (2013) Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol a based on surface-enhanced Raman scattering. Anal Chim Acta 777:57–62

    CAS  Google Scholar 

  38. He LL, Deen BD, Pagel AH, Diez-Gonzalez F, Labuza TP (2013) Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy. Analyst 138:1657–1659

    CAS  Google Scholar 

  39. Yang LB, Ma L, Chen GY, Liu JH, Tian ZQ (2010) Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chem Eur J 16:12683–12693

    CAS  Google Scholar 

  40. Li JL, Chen LX, Lou TT, Wang YQ (2011) Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Appl Mater Interfaces 3:3936–3941

    CAS  Google Scholar 

  41. Chen S, Yuan YX, Yao JL, Han SY, Gu RN (2011) Magnetic separation and immunoassay of multi-antigen based on surface enhanced Raman spectroscopy. Chem Commun 47:4225–4227

    CAS  Google Scholar 

  42. Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyacı IH (2011) SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 136:740–748

    CAS  Google Scholar 

  43. Wang YL, Ravindranath S, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278

    CAS  Google Scholar 

  44. Seifar RM, Altelaar MAF, Dijkstra RJ, Ariese F, Brinkman UAT, Gooijer C (2000) Surface-enhanced resonance Raman spectroscopy as an identification tool in column liquid chromatography. Anal Chem 72:5718–5724

    CAS  Google Scholar 

  45. Zachhuber B, Carrillo-Carrión C, Simonet BM, Suau LB (2012) Quantification of DNT isomers by capillary liquid chromatography using at-line SERS detection or multivariate analysis of SERS spectra of DNT isomer mixtures. J Raman Spectrosc 43:998–1002

    CAS  Google Scholar 

  46. Brosseau CL, Gambardella A, Casadio F, Grzywacz CM, Wouters J, Van Duyne RP (2009) Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Anal Chem 81:3056–3062

    CAS  Google Scholar 

  47. Oriňák A, Talian I, Efremov EV, Ariese F, Oriáaková R (2008) Diterpenoic acids analysis using a coupled TLC-surface-enhanced Raman spectroscopy system. Chromatographia 67:315–319

    Google Scholar 

  48. Chen J, Abell J, Huang YW, Zhao YP (2012) On-chip ultra-thin layer chromatography and surface enhanced raman spectroscopy. Lab Chip 12:3096–3102

    CAS  Google Scholar 

  49. Dijkstra RJ, Gerssen A, Efremov EV, Ariese F, Brinkman UAT, Gooijer C (2004) Substrates for the at-line coupling of capillary electrophoresis and surface-enhanced Raman spectroscopy. Anal Chim Acta 508:127–134

    CAS  Google Scholar 

  50. Leopold N, Lendl B (2010) On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis. Anal Bioanal Chem 396:2341–2348

    CAS  Google Scholar 

  51. Seifar RM, Dijkstra RJ, Brinkman UAT, Gooijer C (1999) At line coupling of surface-enhanced resonance Raman spectroscopy and reversed-phase ion-pair chromatography. Anal Commun 36:273–276

    CAS  Google Scholar 

  52. Banholzer MJ, Millstone JE, Qin LD, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897

    CAS  Google Scholar 

  53. Sackmann M, Bom S, Balster T, Materny A (2007) Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy. J Raman Spectrosc 38:277–282

    CAS  Google Scholar 

  54. Im H, Bantz KC, Lindquist NC, Haynes CL, Oh SH (2010) Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett 10:2231–2236

    CAS  Google Scholar 

  55. Camden JP, Dieringer JA, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41:1653–1661

    CAS  Google Scholar 

  56. Yao JL, Tang J, Wu DY, Sun DM, Xue KH, Ren B, Mao BW, Tian ZQ (2002) Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration. Surf Sci 514:108–116

    CAS  Google Scholar 

  57. Cho WJ, Kim Y, Kim JK (2012) Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 6:249–255

    CAS  Google Scholar 

  58. Que RH, Shao MW, Zhuo SJ, Wen CY, Wang SD, Lee ST (2011) Highly reproducible surface enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly. Adv Funct Mater 21:3337–3343

    CAS  Google Scholar 

  59. Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12:876–881

    CAS  Google Scholar 

  60. Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 10:1576–1599

    Google Scholar 

  61. Pienpinijtham P, Han XX, Ekgasit S, Ozaki Y (2012) An ionic surfactant-mediated Langmuir–Blodgett method to construct gold nanoparticle films for surface-enhanced Raman scattering. Phys Chem Chem Phys 14:10132–10139

    CAS  Google Scholar 

  62. Stoddart PR, White DJ (2009) Optical fibre SERS sensors. Anal Bioanal Chem 394:1761–1774

    CAS  Google Scholar 

  63. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54

    CAS  Google Scholar 

  64. Smythe EJ, Dickey MD, Bao JM, Whitesides GM, Capasso F (2009) Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett 9(3):1132–1138

    CAS  Google Scholar 

  65. Yap FL, Thoniyot P, Krishnan S, Krishnamoorthy S (2012) Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano 6(3):2056–2070

    CAS  Google Scholar 

  66. Yang X, Gu C, Qian F, Li Y, Zhang JZ (2011) Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal Chem 83:5888–5894

    CAS  Google Scholar 

  67. Zhang Y, Shi C, Gu C, Seballos L, Zhang JZ (2007) Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering. Appl Phys Lett 90(19):193–504

    Google Scholar 

  68. Liu T, Xiao XS, Yang CX (2011) Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering. Langmuir 27:4623–4626

    CAS  Google Scholar 

  69. Polavarapu L, Liz-Marzán LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15:5288–5300

    CAS  Google Scholar 

  70. Vo-Dinh T, Hiromoto MYK, Begun GM, Moody RL (1984) Surface-enhanced Raman spectrometry for trace organic analysis. Anal Chem 56:1667–1670

    CAS  Google Scholar 

  71. Singh JP, Chu HY, Abell J, Tripp RA, Zhao YP (2012) Flexible and mechanical strain resistant large area SERS active substrates. Nanoscale 4:3410–3414

    CAS  Google Scholar 

  72. Tseng SC, Yu CC, Wan DH, Chen HL, Wang LA, Wu MC, Su WF, Han HC, Chen LC (2012) Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection. Anal Chem 84:5140–5145

    CAS  Google Scholar 

  73. Lee CH, Tian LM, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Inter 2:3429–3435

    CAS  Google Scholar 

  74. Yu WW, White IM (2010) Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630

    CAS  Google Scholar 

  75. Mukherjee K, Sanchez-Cortes S, García-Ramos JV (2001) Raman and surface-enhanced Raman study of insecticide cyromazine. Vib Spectrosc 25:91–99

    CAS  Google Scholar 

  76. Sanchez-Cortes S, Domingo C, García-Ramos JV, Aznárez JA (2001) Surface-enhanced vibrational study (SEIR and SERS) of dithiocarbamate pesticides on gold films. Langmuir 17:1157–1162

    CAS  Google Scholar 

  77. Vongsvivut J, Robertsona EG, McNaughton D (2010) Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles. J Raman Spectrosc 41:1137–1148

    CAS  Google Scholar 

  78. Guerrini L, Sanchez-Cortes S, Cruz VL, Martinez S, Ristorib S, Feis A (2011) Surface-enhanced Raman spectra of dimethoate and omethoate. J Raman Spectrosc 42:980–985

    CAS  Google Scholar 

  79. Xie YF, Mukamurezi G, Sun YY, Wang HY, Qian H, Yao WR (2012) Establishment of rapid detection method of methamidophos in vegetables by surface enhanced Raman spectroscopy. Eur Food Res Technol 234:1091–1098

    CAS  Google Scholar 

  80. Yuan C, Liu RY, Wang SW, Han GM, Han MY, Jiang CL, Zhang ZP (2011) Single clusters of self-assembled silver nanoparticles for surface-enhanced Raman scattering sensing of a dithiocarbamate fungicide. J Mater Chem 21:16264–16270

    CAS  Google Scholar 

  81. Saute B, Premasiri R, Ziegler L, Narayanan R (2012) Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides. Analyst 137:5082–5087

    CAS  Google Scholar 

  82. Saute B, Narayanan R (2011) Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Analyst 136:527–532

    CAS  Google Scholar 

  83. Zheng X, Chen YH, Chen Y, Bi N, Qi HB, Qin MH, Song D, Zhang HQ, Tian Y (2012) High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering. J Raman Spectrosc 43:1374–1380

    CAS  Google Scholar 

  84. Wang J, Kong LT, Guo Z, Xua JY, Liu JH (2010) Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. J Mater Chem 20:5271–5279

    CAS  Google Scholar 

  85. Lee D, Lee S, Seong GH, Choo J, Lee EK, GWEON DG, Lee S (2006) Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Appl Spectrosc 60(4):373–377

    Google Scholar 

  86. Gao RK, Choi N, Chang S, Kang SH, Song JM, Cho SI, Lim DW, Choo J (2010) Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal Chim Acta 681:87–91

    CAS  Google Scholar 

  87. Yazdi SH, White IM (2013) Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem. Analyst 138:100–103

    CAS  Google Scholar 

  88. Fodjo EK, Riaz S, Li DW, Qu LL, Marius NP, Albertb T, Long YT (2012) Cu@Ag/β-AgVO3 as a SERS substrate for the trace level detection of carbamate pesticides. Anal Methods 4:3785–3791

    CAS  Google Scholar 

  89. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    CAS  Google Scholar 

  90. Li JF, Tian XD, Li SB, Anema JR, Yang ZL, Ding Y, Wu YF, Zeng YM, Chen QZ, Ren B, Wang ZL, Tians ZQ (2013) Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Protoc 8(1):52–64

    CAS  Google Scholar 

  91. Carrillo-Carrión C, Simonet BM, Valcárcel M, Lendl B (2012) Determination of pesticides by capillary chromatography and SERS detection using a novel silver-quantum dots “sponge” nanocomposite. J Chromatogr A 1225:55–61

    Google Scholar 

  92. Carron K, Peltersen L, Lewis M (1992) Octadecylthiol-modified surface-enhanced Raman spectroscopy substrates: a new method for the detection of aromatic compounds. Environ Sci Technol 26:1950–1954

    CAS  Google Scholar 

  93. Costa JCS, Sant’Ana AC, Corio P, Temperini MLA (2006) Chemical analysis of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy. Talanta 70:1011–1016

    CAS  Google Scholar 

  94. Du JJ, Jing CY (2011) Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification. J Phys Chem C 115:17829–17835

    CAS  Google Scholar 

  95. Olson LG, Uibel RH, Harris JM (2004) C18-modified metal-colloid substrates for surface-enhanced Raman detection of trace-level polycyclic aromatic hydrocarbons in aqueoussolution. Appl Spectrosc 58(12):1394–1400

    CAS  Google Scholar 

  96. Pérona O, Rinnert E, Lehaitre M, Crassous P, Compère C (2009) Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS). Talanta 79:199–204

    Google Scholar 

  97. Jiang XH, Lai YC, Yang M, Yang H, Jiang W, Zhan JH (2012) Silver nanoparticle aggregates on copper foil for reliable quantitative SERS analysis of polycyclic aromatic hydrocarbons with a portable Raman spectrometer. Analyst 137:3995–4000

    CAS  Google Scholar 

  98. Leyton P, Sanchez-Cortes S, Garcia-Ramos JV, Domingo C, Campos-Vallette M, Saitz C, Clavijo RE (2004) Selective molecular recognition of polycyclic aromatic hydrocarbons (PAHs) on calix[4]arene-functionalized Ag nanoparticles by surface-enhanced Raman scattering. J Phys Chem B 108:17484–17490

    CAS  Google Scholar 

  99. Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2006) Functionalization of Ag nanoparticles with dithiocarbamate calix[4]arene as an effective supramolecular host for the surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Langmuir 22:10924–10926

    CAS  Google Scholar 

  100. Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2009) Nanosensors based on viologen functionalized silver nanoparticles: few molecules surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots. Anal Chem 81:1418–1425

    CAS  Google Scholar 

  101. Xie YF, Wang X, Han XX, Xue XX, Ji W, Qi ZH, Liu JQ, Zhao B, Ozaki Y (2010) Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst 135:1389–1394

    CAS  Google Scholar 

  102. Xie YF, Wang X, Han XX, Song W, Ruan WD, Liu JQ, Zhao B, Ozaki Y (2011) Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in amixture of five kinds of PAHs. J Raman Spectrosc 42:945–950

    CAS  Google Scholar 

  103. Leyton P, Gómez-Jeria JS, Sanchez-Cortes S, Domingo C, Campos-Vallette M (2006) Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons: surface-enhanced resonance Raman spectroscopy and theoretical studies. J Phys Chem B 110:6470–6474

    CAS  Google Scholar 

  104. Qu LL, Li YT, Li DW, Xue JQ, Fossey JS, Long YT (2013) Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons. Analyst 138:1523–1528

    CAS  Google Scholar 

  105. Bao L, Sheng PT, Li J, Wu SY, Cai QY, Yao SZ (2012) Surface enhanced Raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network. Analyst 137:4010–4015

    CAS  Google Scholar 

  106. Sheng PT, Wu SY, Bao L, Wang X, Chen Z, Cai QY (2012) Surface enhanced Raman scattering detecting polycyclic aromatic hydrocarbons with gold nanoparticle-modified TiO2 nanotube arrays. NewJ Chem 36:2501–2505

    CAS  Google Scholar 

  107. Bantz KC, Haynes CL (2009) Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls. Vib Spectrosc 50:29–35

    CAS  Google Scholar 

  108. Zhu CH, Meng GW, Huang Q, Huang ZL (2012) Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. J Hazard Mater 211–212:389–395

    Google Scholar 

  109. Yuan JP, Lai YC, Duan JL, Zhao QQ, Zhan JH (2012) Synthesis of a b-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs. J Colloid Intere Sci 365:122–126

    CAS  Google Scholar 

  110. Zhu CH, Meng GW, Huang Q, Li ZB, Huang ZL, Wang ML, Yuan JP (2012) Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs. J Mater Chem 22:2271–2278

    CAS  Google Scholar 

  111. Huang ZL, Meng GW, Huang Q, Chen B, Zhu CH, Zhang Z (2013) Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs. J Raman Spectrosc 44:240–246

    CAS  Google Scholar 

  112. Tang HB, Meng GW, Huang Q, Zhang Z, Huang ZL, Zhu CH (2012) Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv Funct Mater 22:218–224

    Google Scholar 

  113. Dasary SSR, Singh AK, Senapati D, Yu HT, Ray PC (2009) Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc 131:13806–13812

    CAS  Google Scholar 

  114. Qian K, Liu HL, Yang LB, Liu JH (2012) Functionalized shell-isolated nanoparticle enhanced Raman spectroscopy for selective detection of trinitrotoluene. Analyst 137:4644–4646

    CAS  Google Scholar 

  115. Zhou X, Liu HL, Yang LB, Liu JH (2013) SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film. Analyst 138:1858–1864

    CAS  Google Scholar 

  116. Holthoff EL, Stratis-Cullum DN, Hankus MK (2011) A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced raman scattering. Sensors 11:2700–2714

    CAS  Google Scholar 

  117. Demeritte T, Kanchanapally R, Fan Z, Singh AK, Senapati D, Dubey M, Zakarb E, Ray PC (2012) Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid. Analyst 137:5041–5045

    CAS  Google Scholar 

  118. Mahmoud KA, Zourob M (2013) Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT). Analyst 138:2712–2719

    CAS  Google Scholar 

  119. Yang LB, Chen GY, Wang J, Wang TT, Li MQ, Liu JH (2009) Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection. J Mater Chem 19:6849–6856

    CAS  Google Scholar 

  120. Xu JY, Wang J, Kong LT, Zheng GC, Guo Z, Liu JH (2011) SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. J Raman Spectrosc 42:1728–1735

    CAS  Google Scholar 

  121. Xu ZG, Hao JM, Braida W, Strickland D, Li FS, Meng XG (2011) Surface-enhanced Raman scattering spectroscopy of explosive 2,4- dinitroanisole using modified silver Nanoparticles. Langmuir 27:13773–13779

    CAS  Google Scholar 

  122. Fierro-Mercado PM, Hernández-Rivera SP (2012) Highly sensitive filter paper substrate for SERS trace explosives detection. Int J Spectrosc. doi:10.1155/2012/716527

    Google Scholar 

  123. Chou A, Jaatinen E, Buividas R, Seniutinas G, Juodkazis S, Izake EL, Fredericks PM (2012) SERS substrate for detection of explosives. Nanoscale 4:7419–7424

    CAS  Google Scholar 

  124. He LL, Lin MS, Li H, Kimb NJ (2010) Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. J Raman Spectrosc 41:739–744

    CAS  Google Scholar 

  125. Liu XJ, Cao LY, Song W, Ai K, Lu LH (2011) Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 3:2944–2952

    CAS  Google Scholar 

  126. Xu ZD, Gartia MR, Choi CJ, Jiang J, Chen Y, Cunninghama BT, Liu GL (2011) Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy. J Raman Spectrosc 42:1939–1944

    CAS  Google Scholar 

  127. Li R, Zhang H, Chen QW, Yan N, Wang H (2011) Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: Synthesis and application in detecting tetracycline. Analyst 136:2527–2532

    CAS  Google Scholar 

  128. Xie YF, Zhu XY, Sun YY, Wang HY, Qian H, Yao WR (2012) Rapid detection method for nitrofuran antibiotic residues by surface-enhanced Raman spectroscopy. Eur Food Res Technol 235:555–561

    CAS  Google Scholar 

  129. Guerrini L, Aliaga AE, Cárcamo J, Gómez-Jeria JS, Sanchez-Cortes S, Campos-Vallette MM, García-Ramos JV (2008) Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering. Anal Chim Acta 624:286–293

    CAS  Google Scholar 

  130. Virga A, Rivolo P, Descrovi E, Chiolerio A, Digregorio G, Frascella F, Soster M, Bussolino F, Marchiò S, Geobaldo F, Giorgis F (2012) SERS active Ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide–antibody assays. J Spectrosc 43:730–736

    CAS  Google Scholar 

  131. An Q, Zhang P, Li JM, Ma WF, Guo J, Hu J, Wang CC (2012) Silver-coated magnetite–carbon core–shell microspheres as substrateenhanced SERS probes for detection of trace persistent organic pollutants. Nanoscale 4:5210–5216

    CAS  Google Scholar 

  132. Yu WW, White IM (2012) A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst 137:1168–1173

    CAS  Google Scholar 

  133. Li XH, Chen GY, Yang LB, Jin Z, Liu JH (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater 20:2815–2824

    CAS  Google Scholar 

  134. Zhou Y, Jin Chen J, Zhang L, Yang LB (2012) Multifunctional TiO2-coated Ag nanowire arrays as recyclable SERS substrates for the detection of organic pollutants. Eur J Inorg Chem 3176–3182

  135. Alvarez-Puebla RA, Liz-Marzán LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem Int Ed 51:11214–11223

    CAS  Google Scholar 

  136. Mulvihill M, Tao A, Benjauthrit K, Arnold J, Yang P (2008) Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew Chem 120:6556–6560

    Google Scholar 

  137. Xu ZH, Hao J, Li FS, Meng XG (2010) Surface-enhanced Raman spectroscopy of arsenate and arsenite using Ag nanofilm prepared by modified mirror reaction. J Colloid Interf Sci 347:90–95

    CAS  Google Scholar 

  138. Han MJ, Hao JM, Xu ZH, Meng XG (2011) Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Anal Chim Acta 692:96–102

    CAS  Google Scholar 

  139. Bao LL, Mahurin SM, Haire RG, Dai S (2003) Silver-doped sol–gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions. Anal Chem 75:6614–6620

    CAS  Google Scholar 

  140. Burneau A, Teiten B (1999) Surface-enhanced Raman spectra of both uranyl(VI)and 2- (5-bromo-2-pyridylazo)-5-diethylaminophenol in silver colloids. Vib Spectrosc 21:97–109

    CAS  Google Scholar 

  141. Leverette CL, Villa-Aleman E, Jokela S, Zhang ZY, Liu YJ, Zhao YP, Smith SA (2009) Trace detection and differentiation of uranyl(VI) ion cast films utilizing aligned Ag nanorod SERS substrates. Vib Spectrosc 50:143–151

    CAS  Google Scholar 

  142. Ruan CM WS, Wang W, Gu BH (2007) Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Anal chim acta 605:80–86

    Google Scholar 

  143. Bhandari D, Wells SM, Retterer ST, Sepaniak MJ (2009) Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman spectroscopy. Anal Chem 81:8061–8067

    CAS  Google Scholar 

  144. Wang GQ, Lim C, Chen LX, Chon H, Choo J, Hong J, deMello AJ (2009) Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Anal Bioanal Chem 394:1827–1832

    CAS  Google Scholar 

  145. Li K, Liang AH, Jiang CN, Li F, Liu QY, Jiang ZL (2012) A stable and reproducible nanosilver-aggregation-4-mercaptopyridine surface-enhanced Raman scattering probe for rapid determination of trace Hg2+. Talanta 99:890–896

    CAS  Google Scholar 

  146. Ma YM, Liu HL, Qian K, Yang LB, Liu JH (2012) A displacement principle for mercury detection by optical waveguide and surface enhanced Raman spectroscopy. J Colloid Inter Sci 386:451–455

    CAS  Google Scholar 

  147. Chen Y, Wu LH, Chen YH, Bi N, Zheng X, Qi HB, Qin MH, Liao X, Zhang HQ, Tian Y (2012) Determination of mercury(II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim Acta 177:341–348

    CAS  Google Scholar 

  148. Chung E, Gao RK, Ko JH, Choi N, Lim DW, Lee EK, Chang S, Choo J (2013) Trace analysis of mercury(II) ions using aptamer modified Au/Ag core–shell nanoparticles and SERS spectroscopy in a microdroplet channel. Lab Chip 13:260–266

    CAS  Google Scholar 

  149. Li P, Liu HL, Yang LB, Liu JH (2013) Sensitive and selective SERS probe for Hg(II) detection using aminated ring-close structure of Rhodamine 6G. Talanta 106:381–387

    CAS  Google Scholar 

  150. Wang YL, Irudayaraj J (2011) A SERS DNAzyme biosensor for lead ion detection. Chem Commun 47:4394–4396

    CAS  Google Scholar 

  151. Sarkar S, Pradhan M, Sinha AK, Basu M, Pal T (2012) Selective and sensitive recognition of Cu2+ in an aqueous medium: a surface-enhanced Raman scattering (SERS)-based analysis with a low-cost Raman reporter. Chem Eur J 18:6335–6342

    CAS  Google Scholar 

  152. Yin J, Wu T, Song JB, Zhang Q, Liu SY, Xu R, Duan HW (2011) SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem Mater 23:4756–4764

    CAS  Google Scholar 

  153. Ye YJ, Liu HL, Yang LB, Liu JH (2012) Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nanoscale 4:6442–6448

    CAS  Google Scholar 

  154. Tan EZ, Yin PG, Lang XF, Zhang HY, Guo L (2012) A novel surface-enhanced Raman scattering nanosensor for detectingmultiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles. Spectrochim Acta A 97:1007–1012

    CAS  Google Scholar 

  155. Szabó L, Hermana K, Leopolda N, Buzumurga C, Chiş V (2011) Surface-enhanced Raman scattering and DFT investigation of eriochrome black T metal chelating compound. Spectrochim Acta A 79:226–231

    Google Scholar 

  156. Li F, Wang J, Lai YM, Wu C, Sun SQ, He YH, Ma H (2013) Ultrasensitive and selective detection of copper(II) and mercury(II) Ions by dye-coded silver nanoparticle-based SERS probes. Biosens Bioelectron 39:82–87

    Google Scholar 

  157. Lee SJ, Moskovits M (2011) Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. Nano Lett 11:145–150

    CAS  Google Scholar 

  158. Kang T, Yoo SM, Kang M, Lee H, Kim H, Lee SYB, Kim B (2012) Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination. Lab Chip 12:3077–3081

    CAS  Google Scholar 

  159. Jarvis RM, Goodacre R (2008) Characterisation and identification of bacteria using SERS. Chem Soc Rev 37:931–936

    CAS  Google Scholar 

  160. Prucek R, Ranc V, Kvítek L, Panáček A, Zbořila R, Kolář M (2012) Reproducible discrimination between Gram-positive and Gram-negative bacteria using surface enhanced Raman spectroscopy with infrared excitation. Analyst 137:2866–2870

    CAS  Google Scholar 

  161. Smith-Palmer T, Douglas C, Fredericks P (2010) Rationalizing the SER spectra of bacteria. Vib Spectrosc 53:103–106

    CAS  Google Scholar 

  162. Guicheteau J, Christesen S, Emge D, Tripathi A (2010) Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging. J Raman Spectrosc 4:1632–1637

    Google Scholar 

  163. Wang YL, Lee K, Irudayaraj J (2010) Silver nanosphere SERS probes for sensitive identification of pathogens. J Phys Chem C 114:16122–16128

    CAS  Google Scholar 

  164. Kahraman M, Keseroglu K, Culha M (2011) On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Appl Spectrosc 65(5):500–506

    CAS  Google Scholar 

  165. Kudo H, Itoh T, Kashiwagi T, Ishikawa M, Takeuchi H, Ukeda H (2011) Surface enhanced Raman scattering spectroscopy of Ag nanoparticle aggregates directly photo-reduced on pathogenic bacterium (Helicobacter pylori). J Photochem Photobiol A 221:181–186

    CAS  Google Scholar 

  166. Fan C, Hu ZQ, Mustapha A, Lin MS (2011) Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Appl Microbiol Biotechnol 92:1053–1061

    CAS  Google Scholar 

  167. Cam D, Keseroglu K, Kahraman M, Sahin F, Culha M (2010) Multiplex identification of bacteria in bacterial mixtures with surface-enhanced Raman scattering. J Raman Spectrosc 41(5):484–489

    CAS  Google Scholar 

  168. Walter A, Marz A, Schumacher W, Rosch P, Popp J (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11(6):1013–1021

    CAS  Google Scholar 

  169. Xu JJ, Zhang L, Gong H, Homola J, Yu Q (2011) Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms. Small 7(3):371–376

    CAS  Google Scholar 

  170. Zhang L, Xu JJ, Mi L, Gong H, Jiang SY, Yu QM (2012) Multifunctional magnetic-plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens Bioelectron 31:130–136

    Google Scholar 

  171. Driskell JD, Kwarta KM, Lipert RJ, Porter MD (2005) Low-Level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal Chem 77:6147–6154

    CAS  Google Scholar 

  172. Chen K, Han HY, Luo ZH (2012) Streptococcus suis II immunoassay based on thorny gold nanoparticles and surface enhanced Raman scattering. Analyst 137:1259–1264

    CAS  Google Scholar 

  173. Chon H, Lim C, Ha SM, Ahn Y, Lee EK, Chang SI, Seong GH, Choo J (2010) On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 82:5290–5295

    CAS  Google Scholar 

  174. Knauer M, Ivleva NP, Niessner R, Haisch C (2012) A flow-through microarray cell for the online SERS detection of antibody-captured E. coli bacteria. Anal Bioanal Chem 402:2663–2667

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21007015), the National Science Fund for Distinguished Young Scholars (21125522), and the Fundamental Research Funds for the Central Universities (WK1214021, WB1113005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, DW., Zhai, WL., Li, YT. et al. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181, 23–43 (2014). https://doi.org/10.1007/s00604-013-1115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1115-3

Keywords

Navigation