Skip to main content
Log in

Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Upconversion nanoparticles (UCNPs) represent a new class of fluorophores. Both the excitation and (anti-Stokes) emission wavelengths are in the long wave part of the spectrum so that their luminescence can deeply penetrate tissues and cause low photodamage in biological samples. Their large anti-Stokes shifts, sharp emission bands, zero auto-fluorescence from biological samples and high photostability renders them an ideal kind of fluorescent labels for a variety of analytical formats, for bioimaging in cancer therapy. This review covers the basic mechanisms of up-conversion luminescence, the methods for the synthesis and surface modification of biocompatible UCNPs, and aspects of the in vivo delivery of UCNPs. More specifically, we discuss (a) recent progress regarding UCNPs for multimodal targeted tumor imaging, (b) UCNP-based methods of biological detection and sensing, (c) the use of UCNPs in drug delivery, (d) applications in photodynamic therapy, photothermal therapy and radiotherapy. Finally, we are addressing challenges and opportunities of this quickly emerging field. Contains 362 references.

Schematic illustration of multifunctional UCNPs for biological applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS Core−Shell quantum dots: synthesis and characterization of a size series of highly luminescent Nanocrystallites. J Phys Chem B 101(46):9463–9475

    CAS  Google Scholar 

  2. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotech 21(1):47–51

    CAS  Google Scholar 

  3. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotech 22(1):93–97

    CAS  Google Scholar 

  4. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water - soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436

    CAS  Google Scholar 

  5. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150

    CAS  Google Scholar 

  6. Derfus AM, Chan WCW, Bhatia SN (2003) Probing the Cytotoxicity of Semiconductor quantum dots. Nano Lett 4(1):11–18

    Google Scholar 

  7. Vinegoni C, Razansky D, Hilderbrand SA, Shao FW, Ntziachristos V, Weissleder R (2009) Transillumination fluorescence imaging in mice using biocompatible upconverting nanoparticles. Opt Lett 34(17):2566–2568

    CAS  Google Scholar 

  8. Xu CT, Svensson N, Axelsson J, Svenmarker P, Somesfalean G, Chen GY, Liang HJ, Liu HC, Zhang ZG, Andersson-Engels S (2008) Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media. Appl Phys Lett 93(17):171103–171103-3

    Google Scholar 

  9. Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH (2006) In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett 6(2):169–174

    CAS  Google Scholar 

  10. Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J (2010) Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers. Adv Funct Mater 20(7):1166–1172

    CAS  Google Scholar 

  11. Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y, Shi J (2012) Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33(4):1079–1089

    CAS  Google Scholar 

  12. Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, Wu D, Li F (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32(4):1148–1156

    CAS  Google Scholar 

  13. Chao Wang LC, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32(4):1110–1120

    Google Scholar 

  14. Qian HS, Guo HC, Ho PC-L, Mahendran R, Zhang Y (2009) Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small 5(20):2285–2290

    CAS  Google Scholar 

  15. Wang C, Tao H, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32(26):6145–6154

    CAS  Google Scholar 

  16. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee ST, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed Engl 50(32):7385–7390

    CAS  Google Scholar 

  17. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14(5):582–596

    CAS  Google Scholar 

  18. Deren PJ, Strek W, Zych E, Drozdzynski J (2000) Up-conversion in elpasolite crystals doped with U3+. Chem Phys Lett 332(3):308–312

    CAS  Google Scholar 

  19. Stump NA, Murray GM, Delcul GD, Haire RG, Peterson JR (1993) Stokes and anti-stokes luminescence from the Trihalides of CM-248. Radiochim Acta 61(3–4):129–136

    CAS  Google Scholar 

  20. Auzel F (2003) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–174

    Google Scholar 

  21. Chen G, Ohulchanskyy TY, Kumar R, Agren H, Prasad PN (2010) Ultrasmall monodisperse NaYF(4):Yb(3+)/Tm(3+) nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4(6):3163–3168

    CAS  Google Scholar 

  22. Dou Q, Zhang Y (2011) Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir 27(21):13236–13241

    CAS  Google Scholar 

  23. Patra A, Friend CS, Kapoor R, Prasad PN (2002) Upconversion in Er3+:ZrO2 Nanocrystals. J Phys Chem B 106(8):1909–1912

    CAS  Google Scholar 

  24. Yi GS, Chow GM (2006) Synthesis of Hexagonal-Phase NaYF4:Yb, Er and NaYF4:Yb, Tm Nanocrystals with Efficient Up-Conversion Fluorescence. Adv Funct Mater 16(18):2324–2329

    CAS  Google Scholar 

  25. Ang LY, Lim ME, Ong LC, Zhang Y (2011) Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine-UK 6(7):1273–1288

    Google Scholar 

  26. Suyver JF, Grimm J, Krämer KW, Güdel HU (2005) Highly efficient near-infrared to visible up-conversion process in. J Lumin 114(1):53–59

    CAS  Google Scholar 

  27. Babu S, Cho J-H, Dowding JM, Heckert E, Komanski C, Das S, Colon J, Baker CH, Bass M, Self WT, Seal S (2010) Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics. Chem Commun 46(37):6915–6917

    CAS  Google Scholar 

  28. Cho JH, Bass M, Babu S, Dowding JM, Self WT, Seal S (2012) Up conversion luminescence of Yb3 + -Er3+ codoped CeO2 nanocrystals with imaging applications. J Lumin 132(3):743–749

    CAS  Google Scholar 

  29. Lopez-Luke T, de la Rosa E, Gonzalez-Yebra AL, Gonzalez-Yebra B, Angeles-Chavez C, Solis D, Salas P, Saldana C, Meza O (2010) Synthesis and characterization of up-conversion emission on lanthanides doped ZrO(2) nanocrystals coated with SiO(2) for biological applications. In: Achilefu S, Raghavachari R (eds) Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications Ii, vol 7576. Proceedings of SPIE-The International Society for Optical Engineering. Spie-Int Soc Optical Engineering, Bellingham. doi:10.1117/12.842993

  30. Yang DM, Dai YL, Ma PA, Kang XJ, Shang MM, Cheng ZY, Li CX, Lin J (2012) Synthesis of Li1-xNaxYF4:Yb3+/Ln(3+) (0 < = x < = 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging. J Mater Chem 22(38):20618–20625

    CAS  Google Scholar 

  31. Islangulov RR, Castellano FN (2006) Photochemical Upconversion: Anthracene Dimerization Sensitized to Visible Light by a RuII Chromophore. Angew Chem Int Ed 45(36):5957–5959

    CAS  Google Scholar 

  32. Ji S, Guo H, Wu W, Wu W, Zhao J (2011) Ruthenium(II) Polyimine–Coumarin Dyad with Non-emissive 3IL Excited State as Sensitizer for Triplet–Triplet Annihilation Based Upconversion. Angew Chem Int Ed 50(36):8283–8286

    CAS  Google Scholar 

  33. Khnayzer RS, Blumhoff J, Harrington JA, Haefele A, Deng F, Castellano FN (2012) Upconversion- powered photoelectrochemistry. Chem Commun 48(2):209–211

    CAS  Google Scholar 

  34. Singh-Rachford TN, Castellano FN (2008) Pd(II) Phthalocyanine-Sensitized Triplet − Triplet Annihilation from Rubrene. J Phys Chem A 112(16):3550–3556

    CAS  Google Scholar 

  35. Singh-Rachford TN, Haefele A, Ziessel R, Castellano FN (2008) Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes. J Am Chem Soc 130(48):16164–16165

    CAS  Google Scholar 

  36. Islangulov RR, Lott J, Weder C, Castellano FN (2007) Noncoherent Low-Power Upconversion in Solid Polymer Films. J Am Chem Soc 129(42):12652–12653

    CAS  Google Scholar 

  37. Singh-Rachford TN, Lott J, Weder C, Castellano FN (2009) Influence of Temperature on Low-Power Upconversion in Rubbery Polymer Blends. J Am Chem Soc 131(33):12007–12014

    CAS  Google Scholar 

  38. Liu Q, Yang T, Feng W, Li F (2012) Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J Am Chem Soc 134(11):5390–5397

    CAS  Google Scholar 

  39. Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P, Li F (2013) A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet–triplet annihilation. J Am Chem Soc 135(13):5029–5037

    CAS  Google Scholar 

  40. Pelle F, Dhaouadi M, Michely L, Aschehoug P, Toncelli A, Veronesi S, Tonelli M (2011) Spectroscopic properties and upconversion in Pr3+:YF3 nanoparticles. PCCP 13(39):17453–17460

    CAS  Google Scholar 

  41. Qin F, Zheng Y, Yu Y, Zheng C, Tayebi PS, Zhang Z, Cao W (2011) Ultraviolet upconversion luminescence of Gd3+ from Ho3+ and Gd3+ codoped oxide ceramic induced by 532-nm CW laser excitation. Opt Commun 284(12):3114–3117

    CAS  Google Scholar 

  42. Nadort A, Sreenivasan VKA, Song Z, Grebenik EA, Nechaev AV, Semchishen VA, Panchenko VY, Zvyagin AV (2013) Quantitative imaging of single upconversion nanoparticles in biological tissue. PLos One 8(5):263292

    Google Scholar 

  43. Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29(7):937–943

    CAS  Google Scholar 

  44. Nam SH, Bae YM, Park YI, Kim JH, Kim HM, Choi JS, Lee KT, Hyeon T, Suh YD (2011) Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed 50(27):6093–6097

    CAS  Google Scholar 

  45. Park YI, Kim JH, Lee KT, Jeon K-S, Na HB, Yu JH, Kim HM, Lee N, Choi SH, Baik S-I, Kim H, Park SP, Park B-J, Kim YW, Lee SH, Yoon S-Y, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21(44):4467–4471

    CAS  Google Scholar 

  46. Dong B, Cao B, He Y, Liu Z, Li Z, Feng Z (2012) Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv Mater 24(15):1987–1993

    CAS  Google Scholar 

  47. Patra A, Friend CS, Kapoor R, Prasad PN (2003) Fluorescence upconversion properties of Er3 + -Doped TiO2 and BaTiO3 nanocrystallites. Chem Mater 15(19):3650–3655

    CAS  Google Scholar 

  48. Wang X, Kong XG, Shan GY, Yu Y, Sun YJ, Feng LY, Chao KF, Lu SZ, Li YJ (2004) Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals. J Phys Chem B 108(48):18408–18413

    CAS  Google Scholar 

  49. Venkatramu V, Falcomer D, Speghini A, Bettinelli M, Jayasankar CK (2008) Synthesis and luminescence properties of Er3 + -doped Lu3Ga5O12 nanocrystals. J Lumin 128(5–6):811–813

    CAS  Google Scholar 

  50. Venkatramu V, Leon-Luis SF, Rodriguez-Mendoza UR, Monteseguro V, Manjon FJ, Lozano-Gorrin AD, Valiente R, Navarro-Urrios D, Jayasankar CK, Munoz A, Lavin V (2012) Synthesis, structure and luminescence of Er3 + -doped Y3Ga5O12 nano-garnets. J Mater Chem 22(27):13788–13799

    CAS  Google Scholar 

  51. Kumar KU, Vijaya N, Oliva J, Jacinto C, de La Rosa E, Jayasankar CK (2012) Multicolor upconversion emission and color tunability in Tm3+/Er3+/Yb3+ Tr-Doped NaNbO3 Nanocrystals. Materials Express 2(4):294–302

    CAS  Google Scholar 

  52. Guo H, Dong N, Yin M, Zhang WP, Lou LR, Xia SD (2004) Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. J Phys Chem B 108(50):19205–19209

    CAS  Google Scholar 

  53. Rai M, Mishra K, Singh SK, Verma RK, Rai SB (2012) Infrared to visible upconversion in Ho3+/Yb3+ co-doped Y2O3 phosphor: Effect of laser input power and external temperature. Spectrochim Acta A 97:825–829

    CAS  Google Scholar 

  54. Li DY, Wang YX, Zhang XR, Shi G, Liu G, Song YL (2013) White upconversion emission in Yb3+/Tm3+/Ho3+ doped SrMoO4 nanocrystals by high excited state energy transfer. J Alloys Compd 550:509–513

    CAS  Google Scholar 

  55. Stouwdam JW, van Veggel FCJM (2002) Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles. Nano Lett 2(7):733–737

    CAS  Google Scholar 

  56. Yi G-S, Chow G-M (2005) Colloidal LaF3:Yb, Er, LaF3:Yb, Ho and LaF3:Yb, Tm nanocrystals with multicolor upconversion fluorescence. J Mater Chem 15(41):4460–4464

    CAS  Google Scholar 

  57. Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 Nanocrystals. Adv Mater 16(23–24):2102–2105

    CAS  Google Scholar 

  58. Heer S, Lehmann O, Haase M, Güdel H-U (2003) Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew Chem Int Ed 42(27):3179–3182

    CAS  Google Scholar 

  59. Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L-H (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er Infrared-to-visible up-conversion phosphors. Nano Lett 4(11):2191–2196

    CAS  Google Scholar 

  60. Zhang Y-W, Sun X, Si R, You L-P, Yan C-H (2005) Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J Am Chem Soc 127(10):3260–3261

    CAS  Google Scholar 

  61. Yin A, Zhang Y, Sun L, Yan C (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb, Tm nanocrystals. Nanoscale 2(6):953–959

    CAS  Google Scholar 

  62. Mai H-X, Zhang Y-W, Si R, Yan Z-G, L-d S, You L-P, Yan C-H (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128(19):6426–6436

    CAS  Google Scholar 

  63. Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb, Er Core and Core/Shell-Structured Nanocrystals. J Phys Chem C 111(37):13721–13729

    CAS  Google Scholar 

  64. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133(43):17122–17125

    CAS  Google Scholar 

  65. Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors. J Am Chem Soc 128(23):7444–7445

    CAS  Google Scholar 

  66. Boyer J-C, Cuccia LA, Capobianco JA (2007) Synthesis of Colloidal Upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals. Nano Lett 7(3):847–852

    CAS  Google Scholar 

  67. Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal Phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem Mater 21(4):717–723

    CAS  Google Scholar 

  68. Vetrone F, Mahalingam V, Capobianco JA (2009) Near-Infrared-to-blue upconversion in colloidal BaYF5:Tm3+, Yb3+ nanocrystals. Chem Mater 21(9):1847–1851

    CAS  Google Scholar 

  69. Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA (2009) The active -core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater 19(18):2924–2929

    CAS  Google Scholar 

  70. He M, Huang P, Zhang CL, Hu HY, Bao CC, Gao G, He R, Cui DX (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals Via an OA/Ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater 21(23):4470–4477

    CAS  Google Scholar 

  71. Huang WJ, Ding MY, Huang HM, Jiang CF, Song Y, Ni YR, Lu CH, Xu ZZ (2013) Uniform NaYF4N:Yb, Tm hexagonal submicroplates: controlled synthesis and enhanced UV and blue upconversion luminescence. Mater Res Bull 48(2):300–304

    CAS  Google Scholar 

  72. Huang WJ, Lu CH, Song Y, Huang HM, Wang YQ, Ni YR, Xu ZZ (2012) Controlled Synthesis and Upconversion Luminescence Properties of Yb3 + -Tm3+ codoped NaYF4 Hexagonal Submicroplates. In: Kao JCM, Hou M, Chen R (eds) Frontier of Nanoscience and Technology Ii, vol 528, Advanced Materials Research. Trans Tech Publications Ltd, Stafa-Zurich, pp 117–120

    Google Scholar 

  73. Karvianto CGM (2011) The effects of surface and surface coatings on fluorescence properties of hollow NaYF4:Yb, Er upconversion nanoparticles. J Mater Res 26(1):70–81

    CAS  Google Scholar 

  74. Liu Q, Chen M, Sun Y, Chen G, Yang T, Gao Y, Zhang X, Li F (2011) Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials 32(32):8243–8253

    CAS  Google Scholar 

  75. Pires AM, Serra OA, Heer S, Gudel HU (2005) Low-temperature upconversion spectroscopy of nanosized Y2O3 : Er,Yb phosphor. J Appl Phys 98(6):063529–063529-7

    Google Scholar 

  76. Yang D, Li C, Li G, Shang M, Kang X, Lin J (2011) Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. J Mater Chem 21(16):5923–5927

    CAS  Google Scholar 

  77. Wei Y, Lu FQ, Zhang XR, Chen DP (2008) Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors. J Alloys Compd 455(1–2):376–384

    CAS  Google Scholar 

  78. Wang L, Li Y (2007) Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals. Chem Mater 19(4):727–734

    CAS  Google Scholar 

  79. Zhang F, Wan Y, Yu T, Zhang F, Shi Y, Xie S, Li Y, Xu L, Tu B, Zhao D (2007) Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew Chem Int Ed 46(42):7976–7979

    CAS  Google Scholar 

  80. Jin J, Gu YJ, Man CW, Cheng J, Xu Z, Zhang Y, Wang H, Lee VH, Cheng SH, Wong WT (2011) Polymer-coated NaYF(4):Yb(3)(+), Er(3)(+) upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5(10):7838–7847

    CAS  Google Scholar 

  81. Yang D, Kang X, Ma P, Dai Y, Hou Z, Cheng Z, Li C, Lin J (2013) Hollow structured upconversion luminescent NaYF(4):Yb(3)(+), Er(3)(+) nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials 34(5):1601–1612

    CAS  Google Scholar 

  82. Zhao JW, Liu XM, Cui D, Sun YJ, Yu Y, Yang YF, Du C, Wang Y, Song K, Liu K, Lu SZ, Kong XG, Zhang H (2010) A Facile Approach to Fabrication of Hexagonal-Phase NaYF4:Yb3+, Er3+ Hollow nanospheres: formation mechanism and upconversion luminescence. Eur J Inorg Chem 12:1813–1819

    Google Scholar 

  83. Liang YJ, Chui PF, Sun XN, Zhao Y, Cheng FM, Sun KN (2013) Hydrothermal synthesis and upconversion luminescent properties of YVO4:Yb3+, Er3+ nanoparticles. J Alloys Compd 552:289–293

    CAS  Google Scholar 

  84. Gao G, Zhang CL, Zhou ZJ, Zhang X, Ma JB, Li C, Jin WL, Cui DX (2013) One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging. Nanoscale 5(1):351–362

    CAS  Google Scholar 

  85. Liu Z, Sun LN, Li FY, Liu Q, Shi LY, Zhang DS, Yuan S, Liu T, Qiu YN (2011) One-pot self-assembly of multifunctional mesoporous nanoprobes with magnetic nanoparticles and hydrophobic upconversion nanocrystals. J Mater Chem 21(44):17615–17618

    CAS  Google Scholar 

  86. Wong H-T, Tsang M-K, Chan C-F, Wong K-L, Fei B, Hao J (2013) In vitro cell imaging using multifunctional small sized KGdF4:Yb3+, Er3+ upconverting nanoparticles synthesized by a one-pot solvothermal process. Nanoscale 5(8):3465–3473

    CAS  Google Scholar 

  87. Wang J, Bo S, Song L, Hu J, Liu X, Zhen Z (2007) One-step synthesis of highly water-soluble LaF 3:Ln 3+ nanocrystals in methanol without using any ligands. Nanotechnology 18(46):465606

    Google Scholar 

  88. Wei Y, Lu FQ, Zhang XR, Chen DP (2007) Polyol-mediated synthesis of water-soluble LaF3: Yb, Er upconversion fluorescent nanocrystals. Mater Lett 61(6):1337–1340

    CAS  Google Scholar 

  89. Hu D, Chen M, Gao Y, Li F, Wu L (2011) A facile method to synthesize superparamagnetic and up-conversion luminescent NaYF4:Yb, Er/Tm@SiO2@Fe3O4 nanocomposite particles and their bioapplication. J Mater Chem 21(30):11276–11282

    CAS  Google Scholar 

  90. Lu H, Yi G, Zhao S, Chen D, Guo L-H, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 14(8):1336–1341

    CAS  Google Scholar 

  91. Zeng JH, Li ZH, Su J, Wang L, Yan R, Li Y (2006) Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology 17(14):3549–3555

    CAS  Google Scholar 

  92. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ Phosphors of controlled size and morphology. Adv Mater 17(17):2119–2123

    CAS  Google Scholar 

  93. Ghosh P, de la Rosa E, Oliva J, Solis D, Kar A, Patra A (2009) Influence of surface coating on the upconversion emission properties of LaPO4:Yb/Tm core-shell nanorods. J Appl Phys 105(11):113532–113535

    Google Scholar 

  94. Li C, Quan Z, Yang J, Yang P, Lin J (2007) Highly Uniform and Monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties. Inorg Chem 46(16):6329–6337

    CAS  Google Scholar 

  95. Ma DK, Huang SM, Yu YY, Xu YF, Dong YQ (2009) Rare-earth-ion-doped hexagonal-phase NaYF4 nanowires: controlled synthesis and luminescent properties. J Phys Chem C 113(19):8136–8142

    CAS  Google Scholar 

  96. Wang ZL, Hao JH, Chan HLW (2010) Down- and up-conversion photoluminescence, cathodolu- minescence and paramagnetic properties of NaGdF4: Yb3+, Er3+ submicron disks assembled from primary nanocrystals. J Mater Chem 20(16):3178–3185

    CAS  Google Scholar 

  97. Zhao J, Sun Y, Kong X, Tian L, Wang Y, Tu L, Zhao J, Zhang H (2008) Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level. J Phys Chem B 112(49):15666–15672

    CAS  Google Scholar 

  98. Yang D, Dai Y, Ma P, Kang X, Cheng Z, Li C, Lin J (2013) One-Step Synthesis of Small-Sized and Water-Soluble NaREF(4) upconversion nanoparticles for in vitro cell imaging and drug delivery. Chem-Eur J 19(8):2685–2694

    CAS  Google Scholar 

  99. Sikora B, Fronc K, Kaminska I, Koper K, Szewczyk S, Paterczyk B, Wojciechowski T, Sobczak K, Minikayev R, Paszkowicz W, Stepien P, Elbaum D (2013) Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells. Nanotechnology 24(23):235702

    CAS  Google Scholar 

  100. Yang J, Shen D, Li X, Li W, Fang Y, Wei Y, Yao C, Tu B, Zhang F, Zhao D (2012) One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications. Chem-Eur J 18(43):13642–13650

    CAS  Google Scholar 

  101. Wang ZL, Hao J, Chan HLW, Law GL, Wong WT, Wong KL, Murphy MB, Su T, Zhang ZH, Zeng SQ (2011) Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in-vitro cell and nude mouse imaging. Nanoscale 3(5):2175–2181

    CAS  Google Scholar 

  102. Gao Y, Cao TY, Li FY (2012) Water-soluble upconversion nanophosphors with cooperative ligands for in vivo lymph node imaging. Chinese J Inorg Chem 28(10):2043–2048

    CAS  Google Scholar 

  103. Wang M, Mi CC, Liu JL, Wu XL, Zhang YX, Hou W, Li F, Xu SK (2009) One-step synthesis and characterization of water-soluble NaYF4:Yb, Er/Polymer nanoparticles with efficient up-conversion fluorescence. J Alloys Compd 485(1–2):L24–L27

    CAS  Google Scholar 

  104. Wang Z, Liu CH, Chang LJ, Li ZP (2012) One-pot synthesis of water-soluble and carboxyl- functionalized beta-NaYF4:Yb, Er(Tm) upconversion nanocrystals and their application for bioimaging. J Mater Chem 22(24):12186–12192

    CAS  Google Scholar 

  105. Cao T, Yang Y, Gao Y, Zhou J, Li Z, Li F (2011) High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 32(11):2959–2968

    CAS  Google Scholar 

  106. Chen C, Sun LD, Li ZX, Li LL, Zhang J, Zhang YW, Yan CH (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir 26(11):8797–8803

    CAS  Google Scholar 

  107. Liu X, Zhao J, Sun Y, Song K, Yu Y, Du C, Kong X, Zhang H (2009) Ionothermal synthesis of hexagonal-phase NaYF(4):Yb(3+), Er(3+)/Tm(3+) upconversion nanophosphors. Chem Commun 43:6628–6630

    Google Scholar 

  108. Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic acid − functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029

    CAS  Google Scholar 

  109. Hu H, Yu M, Li F, Chen Z, Gao X, Xiong L, Huang C (2008) Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chem Mater 20(22):7003–7009

    CAS  Google Scholar 

  110. Chen K, Huang X, Wei H, Tang X (2013) Fabrication of core/shell structured NaYF4:Yb3+, Er3+/polyphosphazene upconversion nanophosphors functionalized with abundant active amino groups. Mater Lett 101(15):54–56

    CAS  Google Scholar 

  111. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotech 22(8):969–976

    CAS  Google Scholar 

  112. Jingning Shan JC, Juan M, Josh C, Wole S (2008) Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors. J Appl Phys 104(9):094308–094308-7

    Google Scholar 

  113. Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M (2006) Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir 22(5):2304–2310

    CAS  Google Scholar 

  114. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    CAS  Google Scholar 

  115. Hong X, Li J, Wang M, Xu J, Guo W, Li J, Bai Y, Li T (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 16(21):4022–4027

    CAS  Google Scholar 

  116. Wang D, Rogach AL, Caruso F (2002) Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett 2(8):857–861

    CAS  Google Scholar 

  117. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44(37):6054–6057

    CAS  Google Scholar 

  118. Zhang P, Rogelj S, Nguyen K, Wheeler D (2006) Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J Am Chem Soc 128(38):12410–12411

    CAS  Google Scholar 

  119. Abdul Jalil R, Zhang Y (2008) Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. Biomaterials 29(30):4122–4128

    CAS  Google Scholar 

  120. Das GK, Tan TTY (2008) Rare-earth-doped and codoped Y 2O 3 nanomaterials as potential bioimaging probes. J Phys Chem C 112(30):11211–11217

    CAS  Google Scholar 

  121. Mader HS, Link M, Achatz DE, Uhlmann K, Li X, Wolfbeis OS (2010) Surface-modified upconverting microparticles and nanoparticles for use in click chemistries. Chem-Eur J 16(18):5416–5424. doi:10.1002/chem.201000117

    CAS  Google Scholar 

  122. Sivakumar S, Diamente PR, van Veggel FCJM (2006) Silica-coated Ln3 + -Doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chem-Eur J 12(22):5878–5884

    CAS  Google Scholar 

  123. Sisi C, Haiyan C, Yueqing G (2011) Comparison of two strategies for the synthesis of upconverting nanoparticles as biological labels. J Phys Conf Ser 277(1):012006

    Google Scholar 

  124. Zhang QB, Song K, Zhao JW, Kong XG, Sun YJ, Liu XM, Zhang YL, Zeng QH, Zhang H (2009) Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4:Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. J Colloid Interface Sci 336(1):171–175

    CAS  Google Scholar 

  125. Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN (2009) Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 19(6):853–859

    CAS  Google Scholar 

  126. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors. Nano Lett 8(11):3834–3838

    CAS  Google Scholar 

  127. Chen Q, Wang X, Chen F, Zhang Q, Dong B, Yang H, Liu G, Zhu Y (2011) Functionalization of upconverted luminescent NaYF4: Yb/Er nanocrystals by folic acid-chitosan conjugates for targeted lung cancer cell imaging. J Mater Chem 21(21):7661–7667

    CAS  Google Scholar 

  128. Wu ZN, Guo CR, Liang S, Zhang H, Wang LP, Sun HC, Yang B (2012) A pluronic F127 coating strategy to produce stable up-conversion NaYF4:Yb, Er(Tm) nanoparticles in culture media for bioimaging. J Mater Chem 22(35):18596–18602

    CAS  Google Scholar 

  129. Zhan Q, Qian J, Liang H, Somesfalean G, Wang D, He S, Zhang Z, Andersson-Engels S (2011) Using 915 nm laser excited Tm(3)+/Er(3)+/Ho(3) + - doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5(5):3744–3757

    CAS  Google Scholar 

  130. Tianye Cao TY, Gao Y, Yang Y, He H, Li F (2010) Water-soluble NaYF4:Yb/Er upconver- sion nanophosphors: synthesis, characteristics and application in bioimaging. Inorg Chem Commun 13(3):392–394

    Google Scholar 

  131. Wu S, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, Cohen BE, Schuck PJ (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci U S A 106(27):10917–10921

    CAS  Google Scholar 

  132. Bogdan N, Vetrone F, Roy R, Capobianco JA (2010) Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J Mater Chem 20(35):7543–7550

    CAS  Google Scholar 

  133. Yi G, Peng Y, Gao Z (2011) Strong Red-Emitting near-Infrared-to-Visible upconversion fluorescent nanoparticles. Chem Mater 23(11):2729–2734

    CAS  Google Scholar 

  134. Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L, Song H (2011) Multifunctional NaYF4: Yb3+, Er3 + @Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem 21(17):6193–6200

    CAS  Google Scholar 

  135. Li D, Dong B, Bai X, Wang Y, Song H (2010) Influence of the TGA modification on upconversion luminescence of hexagonal-phase NaYF4:Yb3+, Er3+ Nanoparticles. J Phys Chem C 114(18):8219–8226

    CAS  Google Scholar 

  136. Liebherr RB, Soukka T, Wolfbeis OS, Gorris HH (2012) Maleimide activation of photon upconverting nanoparticles for bioconjugation. Nanotechnology 23(48):485103

    CAS  Google Scholar 

  137. Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM, Murray CB (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133(4):998–1006

    CAS  Google Scholar 

  138. Esipova TV, Ye XC, Collins JE, Sakadzic S, Mandeville ET, Murray CB, Vinogradov SA (2012) Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc Natl Acad Sci U S A 109(51):20826–20831

    CAS  Google Scholar 

  139. Zhou H-P, Xu C-H, Sun W, Yan C-H (2009) Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications. Adv Funct Mater 19(24):3892–3900

    CAS  Google Scholar 

  140. Cheng L, Yang K, Chen Q, Liu Z (2012) Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6(6):5605–5613

    CAS  Google Scholar 

  141. Liu Q, Li C, Yang T, Yi T, Li F (2010) “Drawing” upconversion nanophosphors into water through host-guest interaction. Chem Commun 46(30):5551–5553

    CAS  Google Scholar 

  142. Wang M, Liu JL, Zhang YX, Hou W, Wu XL, Xu SK (2009) Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals. Mater Lett 63(2):325–327

    CAS  Google Scholar 

  143. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840

    CAS  Google Scholar 

  144. Yi GS, Chow GM (2006) Water-Soluble NaYF4:Yb, Er(Tm)/NaYF4/Polymer core/shell/shell nanopartic- les with Significant Enhancement of Upconversion Fluorescence. Chem Mater 19(3):341–343

    Google Scholar 

  145. Budijono SJ, Shan J, Yao N, Miura Y, Hoye T, Austin RH, Ju Y, Prud’homme RK (2009) Synthesis of Stable Block-Copolymer-Protected NaYF4:Yb3+, Er3+ Up-Converting Phosphor Nanoparticles. Chem Mater 22(2):311–318

    Google Scholar 

  146. Shan J, Budijono SJ, Hu G, Yao N, Kang Y, Ju Y, Prud’homme RK (2011) Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for Photodynamic Therapy. Adv Funct Mater 21(13):2488–2495

    CAS  Google Scholar 

  147. Cheng L, Yang K, Zhang S, Shao M, Lee S, Liu Z (2010) Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res 3(10):722–732

    CAS  Google Scholar 

  148. Kobayashi H, Kosaka N, Ogawa M, Morgan NY, Smith PD, Murray CB, Ye X, Collins J, Kumar GA, Bell H, Choyke PL (2009) In vivo multiple color lymphatic imaging using upconverting nanocrystals. J Mater Chem 19(36):6481–6484

    CAS  Google Scholar 

  149. Li Z, Zhang Y (2006) Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor upconversion fluorescence emission. Angew Chem Int Ed 45(46):7732–7735

    Google Scholar 

  150. Zako T, Nagata H, Terada N, Utsumi A, Sakono M, Yohda M, Ueda H, Soga K, Maeda M (2009) Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem Biophys Res Commun 381(1):54–58

    CAS  Google Scholar 

  151. Hu H, Xiong L, Zhou J, Li F, Cao T, Huang C (2009) Multimodal-luminescence core–shell nanocomposites for targeted imaging of tumor cells. Chem-Eur J 15(14):3577–3584

    CAS  Google Scholar 

  152. Wilhelm S, Hirsch T, Patterson WM, Scheucher E, Mayr T, Wolfbeis OS (2013) Multicolor upconversion nanoparticles for protein conjugation. Theranostics 3(4):239–248

    CAS  Google Scholar 

  153. Li F, Li C, Liu X, Bai T, Dong W, Zhang X, Shi Z, Feng S (2013) Microwave-assisted synthesis and up–down conversion luminescent properties of multicolor hydrophilic LaF3:Ln3+ nanocrystals. Dalton Trans 42 (6):2015–2022

    Google Scholar 

  154. Murugana AV, Viswanath AK, Ravi V, Kakade A, Saaminathan V (2006) Photoluminescence studies of Eu3+ doped Y2O3 nanophosphor prepared by microwave hydrothermal method. Appl Phys Lett 89(12):123120

    Google Scholar 

  155. Patra CR, Alexandra G, Patra S, Jacob DS, Gedanken A, Landau A, Gofer Y (2005) Microwave approach for the synthesis of rhabdophane-type lanthanide orthophosphate (Ln = La, Ce, Nd, Sm, Eu, Gd and Tb) nanorods under solvothermal conditions. New J Chem 29(5):733–739

    CAS  Google Scholar 

  156. Qin X, Yokomori T, Ju YG (2007) Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors. Appl Phys Lett 90(7):073104

    Google Scholar 

  157. Ehlert O, Thomann R, Darbandi M, Nann T (2008) A four-color colloidal multiplexing nanoparticle System. ACS Nano 2(1):120–124

    CAS  Google Scholar 

  158. Gorris HH, Wolfbeis OS (2013) Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed 52(13):3584–3600

    CAS  Google Scholar 

  159. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065

    CAS  Google Scholar 

  160. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2004) Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals. J Appl Phys 96(1):661–667

    CAS  Google Scholar 

  161. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130(17):5642–5643

    CAS  Google Scholar 

  162. Gorris HH, Ali R, Saleh SM, Wolfbeis OS (2011) Tuning the dual emission of photon- upconverting nanoparticles for ratiometric multiplexed encoding. Adv Mater 23(14):1652–1655

    CAS  Google Scholar 

  163. Bai X, Song H, Pan G, Lei Y, Wang T, Ren X, Lu S, Dong B, Dai Q, Fan L (2007) Size-dependent upconversion luminescence in Er3+/Yb3 + -codoped nanocrystalline Yttria: saturation and thermal effects. J Phys Chem C 111(36):13611–13617

    CAS  Google Scholar 

  164. Dou Q, Idris NM, Zhang Y (2013) Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomaterials 34(6):1722–1731

    CAS  Google Scholar 

  165. Gainer CF, Joshua GS, Romanowski M (2012) Toward the Use of Two-Color Emission Control in Upconverting NaYF4:Er3+, Yb3+ Nanoparticles for Biomedical Imaging. In: Cartwright AN, Nicolau DV (eds) Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications Viii, vol 8231. Proceedings of SPIE. Spie-Int Soc Optical Engineering, Bellingham

    Google Scholar 

  166. Saleh SM, Ali R, Wolfbeis OS (2011) Quenching of the luminescence of upconverting luminescent nanoparticles by heavy metal ions. Chem-Eur J 17(51):14611–14617

    CAS  Google Scholar 

  167. Chen G, Ohulchanskyy TY, Kachynski A, Agren H, Prasad PN (2011) Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF(4):Er(3) + nanocrystals under excitation at 1490 nm. ACS Nano 5(6):4981–4986

    CAS  Google Scholar 

  168. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2003) Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+. J Phys Chem B 107(5):1107–1112

    CAS  Google Scholar 

  169. Yin W, Zhao L, Zhou L, Gu Z, Liu X, Tian G, Jin S, Yan L, Ren W, Xing G, Zhao Y (2012) Enhanced red emission from GdF3:Yb3+, Er3+ upconversion nanocrystals by Li + doping and their application for bioimaging. Chem-Eur J 18(30):9239–9245

    CAS  Google Scholar 

  170. Wang F, Wang J, Liu X (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49(41):7456–7460

    CAS  Google Scholar 

  171. Hai G, Zhengquan L, Haisheng Q, Yong H, Idris Niagara M (2010) Seed-mediated synthesis of NaY F 4:Y b, Er/NaGdF 4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology 21(12):125602

    Google Scholar 

  172. Liu C, Wang H, Li X, Chen D (2009) Monodisperse, size-tunable and highly efficient [small beta]-NaYF4:Yb, Er(Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J Mater Chem 19(21):3546–3553

    CAS  Google Scholar 

  173. Qian HS, Zhang Y (2008) Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24(21):12123–12125

    CAS  Google Scholar 

  174. Schäfer H, Ptacek P, Zerzouf O, Haase M (2008) Synthesis and Optical Properties of KYF4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF4. Adv Funct Mater 18(19):2913–2918

    Google Scholar 

  175. Su Q, Han S, Xie X, Zhu H, Chen H, Chen CK, Liu RS, Chen X, Wang F, Liu X (2012) The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc 134(51):20849–20857

    CAS  Google Scholar 

  176. Wang Y, Tu L, Zhao J, Sun Y, Kong X, Zhang H (2009) Upconversion luminescence of β-NaYF4: Yb3+, Er3 + @β-NaYF4 Core/Shell nanoparticles: excitation power density and surface dependence. J Phys Chem C 113(17):7164–7169

    CAS  Google Scholar 

  177. Zhang F, Che R, Li X, Yao C, Yang J, Shen D, Hu P, Li W, Zhao D (2012) Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett 12(6):2852–2858

    CAS  Google Scholar 

  178. Chen G, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li Z, Song J, Pandey RK, Agren H, Prasad PN, Han G (2012) (alpha-NaYbF4:Tm(3+))/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6(9):8280–8287

    CAS  Google Scholar 

  179. Feng W, Sun LD, Yan CH (2009) Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method. Chem Commun 29:4393–4395

    Google Scholar 

  180. Schietinger S, Aichele T, Wang HQ, Nann T, Benson O (2010) Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett 10(1):134–138

    CAS  Google Scholar 

  181. Sudheendra L, Ortalan V, Dey S, Browning ND, Kennedy IM (2011) Plasmonic Enhanced Emissions from Cubic NaYF4:Yb:Er/Tm Nanophosphors. Chem Mater 23(11):2987–2993

    CAS  Google Scholar 

  182. Yuan P, Lee YH, Gnanasammandhan MK, Guan Z, Zhang Y, Xu QH (2012) Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale 4(16):5132–5137

    CAS  Google Scholar 

  183. Zhang F, Braun GB, Shi Y, Zhang Y, Sun X, Reich NO, Zhao D, Stucky G (2010) Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J Am Chem Soc 132(9):2850–2851

    CAS  Google Scholar 

  184. Xiao QB, Zhu HM, Tu DT, Ma E, Chen XY (2013) Near-Infrared-to-Near-Infrared Downshifting and Near-Infrared-to-Visible Upconverting Luminescence of Er3 + -Doped In2O3 Nanocrystals. J Phys Chem C 117(20):10834–10841

    CAS  Google Scholar 

  185. Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12):3287–3295

    CAS  Google Scholar 

  186. Wang YF, Liu GY, Sun LD, Xiao JW, Zhou JC, Yan CH (2013) Nd3 + -Sensitized upconversion nanophosphors: efficient In vivo bioimaging probes with minimized heating effect. ACS Nano. doi:10.1021/nn402601d

    Google Scholar 

  187. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    CAS  Google Scholar 

  188. Fang C, Shi B, Pei Y-Y, Hong M-H, Wu J, Chen H-Z (2006) In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27(1):27–36

    CAS  Google Scholar 

  189. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95(8):4607–4612

    CAS  Google Scholar 

  190. Dass CR, Su T (2001) Particle-mediated intravascular delivery of oligonucleotides to tumors: associated biology and lessons from genotherapy. Drug Deliv 8(4):191–213

    CAS  Google Scholar 

  191. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, Cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668

    CAS  Google Scholar 

  192. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    CAS  Google Scholar 

  193. Xiao K, Li YP, Luo JT, Lee JS, Xiao WW, Gonik AM, Agarwal RG, Lam KS (2011) The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32(13):3435–3446

    CAS  Google Scholar 

  194. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconj Chem 15(4):897–900

    CAS  Google Scholar 

  195. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    CAS  Google Scholar 

  196. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2007) Cationic Polystyrene Nanosphere Toxicity Depends on Cell-Specific Endocytic and Mitochondrial Injury Pathways. ACS Nano 2(1):85–96

    Google Scholar 

  197. Jiang S, Zhang Y (2008) IR-to-visible Upconversion Nanoparticles for in Vitro Fluorescent Imaging. In: AbuOsman NA, Ibrahim F, WanAbas WAB, AbdulRahman HS, Ting HN (eds) 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, Vols 1 and 2, vol 21, IFMBE Proceedings, vol 1-2. Springer, New York, pp 330–332

    Google Scholar 

  198. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew Chem Int Ed 49(36):6288–6308

    CAS  Google Scholar 

  199. Nie G, Hah HJ, Kim G, Lee YE, Qin M, Ratani TS, Fotiadis P, Miller A, Kochi A, Gao D, Chen T, Orringer DA, Sagher O, Philbert MA, Kopelman R (2012) Hydrogel nanoparticles with covalently linked coomassie blue for brain tumor delineation visible to the surgeon. Small 8(6):884–891

    CAS  Google Scholar 

  200. Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly(ethylene glycol)-containing hydrogels in drug delivery. J Controlled Release 62(1–2):81–87

    CAS  Google Scholar 

  201. Wang S, Kim G, Lee YE, Hah HJ, Ethirajan M, Pandey RK, Kopelman R (2012) Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics–a “see and treat” strategy. ACS Nano 6(8):6843–6851

    CAS  Google Scholar 

  202. Wenger Y, Schneider RJ 2nd, Reddy GR, Kopelman R, Jolliet O, Philbert MA (2011) Tissue distribution and pharmacokinetics of stable polyacrylamide nanoparticles following intravenous injection in the rat. Toxicol Appl Pharmacol 251(3):181–190

    CAS  Google Scholar 

  203. Wang C, Cheng L, Xu H, Liu Z (2012) Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33(19):4872–4881

    CAS  Google Scholar 

  204. Boyer J-C, Manseau M-P, Murray JI, van Veggel FCJM (2009) Surface Modification of Upconverting NaYF4 Nanoparticles with PEG − Phosphate Ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26(2):1157–1164

    Google Scholar 

  205. Kamimura M, Miyamoto D, Saito Y, Soga K, Nagasaki Y (2008) Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling. Langmuir 24(16):8864–8870

    CAS  Google Scholar 

  206. Kamimura M, Miyamoto D, Saito Y, Soga K, Nagasaki Y (2008) Preparation of PEG and protein co-immobilized upconversion nanophosphors as near-infrared biolabeling materials. J Photopolym Sci Technol 21(2):183–187

    CAS  Google Scholar 

  207. Konishi T, Yamada M, Soga K, Matsuura D, Nagasaki Y (2006) PEG-based surface modification on upconversion nanophosphors for bio-imaging under IR excitation. J Photopolym Sci Technol 19(2):145–149

    CAS  Google Scholar 

  208. Zako T, Nagata H, Terada N, Sakono M, Soga K, Maeda M (2008) Improvement of dispersion stability and characterization of upconversion nanophosphors covalently modified with PEG as a fluorescence bioimaging probe. J Mater Sci 43(15):5325–5330

    CAS  Google Scholar 

  209. Zeng S, Tsang MK, Chan CF, Wong KL, Hao J (2012) PEG modified BaGdF(5):Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials 33(36):9232–9238

    CAS  Google Scholar 

  210. Cheng L, Yang K, Shao M, Lu X, Liu Z (2011) In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine-UK 6(8):1327–1340

    CAS  Google Scholar 

  211. Wang Y, Wu Z, Liu Z (2013) Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor. Anal Chem 85(1):258–264

    CAS  Google Scholar 

  212. Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32(35):9364–9373

    CAS  Google Scholar 

  213. Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, Kang JH, Lim SM, Park S, Song R (2013) RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J Nucl Med 54(1):96–103

    CAS  Google Scholar 

  214. Naczynski DJ, Andelman T, Pal D, Chen S, Riman RE, Roth CM, Moghe PV (2010) Albumin Nanoshell Encapsulation of Near-Infrared-Excitable Rare-Earth Nanoparticles Enhances Biocompatibility and Enables Targeted Cell Imaging. Small 6(15):1631–1640

    CAS  Google Scholar 

  215. Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F (2009) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81(21):8687–8694

    CAS  Google Scholar 

  216. Zhou A, Wei Y, Wu B, Chen Q, Xing D (2012) Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy. Mol Pharm 9(6):1580–1589

    CAS  Google Scholar 

  217. Bogdan N, Rodriguez EM, Sanz-Rodriguez F, de la Cruz MCI, Juarranz A, Jaque D, Sole JG, Capobianco JA (2012) Bio-functionalization of ligand-free upconverting lanthanide doped nanoparticles for bio-imaging and cell targeting. Nanoscale 4(12):3647–3650

    CAS  Google Scholar 

  218. Hischemoller A, Walter C, Weiler V, Hummel H, Thepen T, Huhn M, Barth S, Hoheisel W, Kohler K, Dimova-Landen D, Bremer C, Haase M, Waldeck J (2012) Labeling of Anti-MUC-1 Binding Single Chain Fv Fragments to Surface Modified Upconversion Nanoparticles for an Initial in vivo Molecular Imaging Proof of Principle Approach. Int J Mol Sci 13(4):4153–4167

    Google Scholar 

  219. Huang Z, Wu S, Duan N, Hua D, Hu Y, Wang Z (2012) Sensitive detection of carcinoembryonic antigen with magnetic nano-bead and upconversion nanoparticles-based immunoassay. J Pharm Biomed Anal 66:225–231

    CAS  Google Scholar 

  220. Kamimura M, Miyamoto D, Saito Y, Soga K, Nagasaki Y (2008) Preparation of PEGylated upconversion nanophosphors with high dispersion stability under physiological conditions for near-infrared bioimaging, vol 33. Transactions of the Materials Research Society of Japan, 33(3), 3. Materials Research Society Japan-Mrs-J, Tokyo

    Google Scholar 

  221. Kong X, Zhang H, Sun Y, Zhao Z, Qu Y, Wang Y, Aalders M (2008) Luminescent upconversion nanoparticle (ULNP) with photosensitizing functions to be used for the diagnosis and therapy of cancer. Luminescence 23(2):77–77

    Google Scholar 

  222. Liu CH, Wang Z, Wang XK, Li ZP (2011) Surface modification of hydrophobic NaYF4:Yb, Er upconversion nanophosphors and their applications for immunoassay. Science China-Chemistry 54(8):1292–1297

    CAS  Google Scholar 

  223. Mi C, Tian Z, Cao C, Wang Z, Mao C, Xu S (2011) Novel microwave-assisted solvothermal synthesis of NaYF4:Yb, Er upconversion nanoparticles and their application in cancer cell imaging. Langmuir 27(23):14632–14637

    CAS  Google Scholar 

  224. Nagarajan S, Li Z, Marchi-Artzner V, Grasset F, Zhang Y (2010) Imaging gap junctions with silica-coated upconversion nanoparticles. Med Biol Eng Comput 48(10):1033–1041

    Google Scholar 

  225. Pakkila H, Yliharsila M, Lahtinen S, Hattara L, Salminen N, Arppe R, Lastusaari M, Saviranta P, Soukka T (2012) Quantitative multianalyte microarray immunoassay utilizing upconverting phosphor technology. Anal Chem 84(20):8628–8634

    CAS  Google Scholar 

  226. Shan J, Yong Z, Kian Meng L, Eugene KWS, Lei Y (2009) NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 20(15):155101

    Google Scholar 

  227. Song K, Ran YY, Kong XG (2011) Homogeneous immunoassay technology based on near infrared upconversion fluorescence resonance energy transfer. Guang Pu Xue Yu Guang Pu Fen Xi 31(1):86–90

    Google Scholar 

  228. Song K, Tian LJ, Kong XG, Liu K, Zhang QB, Du C, Zeng QH, Sun YJ, Liu XM (2010) Preparation, characterization and specific biological labeling of silica coated upconversion fluorescent nanocrystals. Guang Pu Xue Yu Guang Pu Fen Xi 30(1):133–136

    CAS  Google Scholar 

  229. Wang M, Hou W, Mi C-C, Wang W-X, Xu Z-R, Teng H-H, Mao C-B, Xu S-K (2009) Immunoassay of goat antihuman immunoglobulin g antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er Upconversion fluorescent nanoparticles and gold nanoparticles. Anal Chem 81(21):8783–8789

    CAS  Google Scholar 

  230. Wang M, Mi C-C, Wang W-X, Liu C-H, Wu Y-F, Xu Z-R, Mao C-B, Xu S-K (2009) Immunolabeling and NIR-Excited Fluorescent Imaging of HeLa Cells by Using NaYF4:Yb, Er Upconversion Nanoparticles. ACS Nano 3(6):1580–1586

    CAS  Google Scholar 

  231. Wang M, Mi C, Zhang Y, Liu J, Li F, Mao C, Xu S (2009) NIR-responsive silica-coated NaYbF(4):Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J Phys Chem C Nanomater Interfaces 113(44):19021–19027

    CAS  Google Scholar 

  232. Liu JN, Bu W, Pan LM, Zhang S, Chen F, Zhou L, Zhao KL, Peng W, Shi J (2012) Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials 33(29):7282–7290

    CAS  Google Scholar 

  233. Yu XF, Sun Z, Li M, Xiang Y, Wang QQ, Tang F, Wu Y, Cao Z, Li W (2010) Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials 31(33):8724–8731

    CAS  Google Scholar 

  234. Chen H-Q, Yuan F, Wang S-Z, Xu J, Zhang Y-Y, Wang L (2013) Near-infrared to near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles-aptamer-Au nanorods light resonance energy transfer system for the detection of mercuric(ii) ions in solution. Analyst 138(8):2392–2397

    CAS  Google Scholar 

  235. Chen H, Yuan F, Wang S, Xu J, Zhang Y, Wang L (2013) Aptamer-based sensing for thrombin in red region via fluorescence resonant energy transfer between NaYF4:Yb, Er upconversion nanoparticles and gold nanorods. Biosensors Bioelectron 48:19–25

    CAS  Google Scholar 

  236. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6

    CAS  Google Scholar 

  237. Li L-L, Wu P, Hwang K, Lu Y (2013) An Exceptionally Simple Strategy for DNA-Functionalized Up-Conversion Nanoparticles as Biocompatible Agents for Nanoassembly, DNA Delivery, and Imaging. J Am Chem Soc 135(7):2411–2414

    CAS  Google Scholar 

  238. Liu J, Cheng J, Zhang Y (2012) Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence. Biosens Bioelectron 43C:252–256

    Google Scholar 

  239. Rubner MM, Achatz DE, Mader HS, Stolwijk JA, Wegener J, Harms GS, Wolfbeis OS, Wagenknecht HA (2012) DNA “Nanolamps”: “Clicked” DNA Conjugates with Photon Upconverting Nanoparticles as Highly Emissive Biomaterial. Chempluschem 77(2):129–134

    CAS  Google Scholar 

  240. Song K, Kong X, Liu X, Zhang Y, Zeng Q, Tu L, Shi Z, Zhang H (2012) Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors. Chem Commun 48(8):1156–1158

    CAS  Google Scholar 

  241. Song K, Kong XG (2011) A new optical switch using upconversion nanoparticles conjugated aptamer. Spectrosc Spectr Anal 31(3):844–848

    CAS  Google Scholar 

  242. Wu S, Duan N, Wang Z, Wang H (2011) Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin A using upconversion nanoparticles as labels. Analyst 136(11):2306–2314

    CAS  Google Scholar 

  243. Yliharsila M, Valta T, Karp M, Hattara L, Harju E, Holsa J, Saviranta P, Waris M, Soukka T (2011) Oligonucleotide Array-in-well platform for detection and genotyping human adenoviruses by utilizing upconverting phosphor label technology. Anal Chem 83(4):1456–1461

    CAS  Google Scholar 

  244. Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, Achilefu S, Gu Y (2013) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS nano 7(1):676–688

    CAS  Google Scholar 

  245. Lee KY, Seow E, Zhang Y, Lim YC (2013) Targeting CCL21–folic acid–upconversion nanoparticles conjugates to folate receptor-α expressing tumor cells in an endothelial-tumor cell bilayer model. Biomaterials 34(20):4860–4871

    CAS  Google Scholar 

  246. Ma J, Huang P, He M, Pan L, Zhou Z, Feng L, Gao G, Cui D (2012) Folic acid-conjugated LaF3:Yb, Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. J Phys Chem B 116(48):14062–14070

    CAS  Google Scholar 

  247. Xiong LQ, Chen ZG, Yu MX, Li FY, Liu C, Huang CH (2009) Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30(29):5592–5600

    CAS  Google Scholar 

  248. Achatz DE, Meier RJ, Fischer LH, Wolfbeis OS (2011) Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angew Chem Int Ed 50(1):260–263

    CAS  Google Scholar 

  249. Mader HS, Wolfbeis OS (2010) Optical ammonia sensor based on upconverting luminescent nanoparticles. Anal Chem 82(12):5002–5004

    CAS  Google Scholar 

  250. Sun LN, Peng H, Stich MIJ, Achatz D, Wolfbeis OS (2009) pH sensor based on upconverting luminescent lanthanide nanorods. Chem Commun 33:5000–5002

    Google Scholar 

  251. Ali R, Saleh SM, Meier RJ, Azab HA, Abdelgawad II, Wolfbeis OS (2010) Upconverting nanoparticle based optical sensor for carbon dioxide. Sensor Actuat B-Chem 150(1):126–131

    CAS  Google Scholar 

  252. Li C, Liu J, Alonso S, Li F, Zhang Y (2012) Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions. Nanoscale 4(19):6065–6071

    CAS  Google Scholar 

  253. Liu J, Liu Y, Liu Q, Li C, Sun L, Li F (2011) Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J Am Chem Soc 133(39):15276–15279

    CAS  Google Scholar 

  254. Liu Q, Peng J, Sun L, Li F (2011) High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 5(10):8040–8048

    CAS  Google Scholar 

  255. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotech 23(11):1418–1423

    CAS  Google Scholar 

  256. Yang Y, Shao Q, Deng R, Wang C, Teng X, Cheng K, Cheng Z, Huang L, Liu Z, Liu X, Xing B (2012) In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed Engl 51(13):3125–3129

    CAS  Google Scholar 

  257. Liu Y, Chen M, Cao T, Sun Y, Li C, Liu Q, Yang T, Yao L, Feng W, Li F (2013) A Cyanine-Modified Nanosystem for in vivo Upconversion Luminescence Bioimaging of Methylmercury. J Am Chem Soc 135(26):9869–9876

    CAS  Google Scholar 

  258. Wei YC, Chen Q, Wu BY, Zhou AG, Xing D (2012) High-sensitivity in vivo imaging for tumors using a spectral up-conversion nanoparticle NaYF4:Yb3+, Er3+ in cooperation with a microtubulin inhibitor. Nanoscale 4(13):3901–3909

    CAS  Google Scholar 

  259. Deng M, Ma Y, Huang S, Hu G, Wang L (2011) Monodisperse upconversion NaYF4 nanocrystals: syntheses and bioapplications. Nano Res 4(7):685–694

    CAS  Google Scholar 

  260. Jeong S, Won N, Lee J, Bang J, Yoo J, Kim SG, Chang JA, Kim J, Kim S (2011) Multiplexed near-infrared in vivo imaging complementarily using quantum dots and upconverting NaYF4:Yb3+, Tm3+ nanoparticles. Chem Commun 47(28):8022–8024

    CAS  Google Scholar 

  261. Ryu J, Park H-Y, Kim K, Kim H, Yoo JH, Kang M, Im K, Grailhe R, Song R (2010) Facile synthesis of ultrasmall and Hexagonal NaGdF4: Yb3+, Er3+ Nanoparticles with magnetic and upconversion imaging properties. J Phys Chem C 114(49):21077–21082

    CAS  Google Scholar 

  262. Salthouse C, Hildebrand S, Weissleder R, Mahmood U (2008) Design and demonstration of a small-animal up-conversion imager. Opt Express 16(26):21731–21737

    Google Scholar 

  263. Vetrone F, Naccache R, de la Fuente AJ, Sanz-Rodriguez F, Blazquez-Castro A, Rodriguez EM, Jaque D, Sole JG, Capobianco JA (2010) Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2(4):495–498

    CAS  Google Scholar 

  264. Yu MX, Li FY, Chen ZG, Hu H, Zhan C, Yang H, Huang CH (2009) Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors. Anal Chem 81(3):930–935

    CAS  Google Scholar 

  265. Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, Wu L, Li F (2011) Core-shell NaYF4:Yb3+, Tm3 + @FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32(29):7200–7208

    CAS  Google Scholar 

  266. Yang T, Sun Y, Liu Q, Feng W, Yang P, Li F (2012) Cubic sub-20 nm NaLuF(4)-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 33(14):3733–3742

    CAS  Google Scholar 

  267. Zhou J, Zhu X, Chen M, Sun Y, Li F (2012) Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. Biomaterials 33(26):6201–6210

    CAS  Google Scholar 

  268. Idris NM, Li Z, Ye L, Sim EK, Mahendran R, Ho PC, Zhang Y (2009) Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30(28):5104–5113

    CAS  Google Scholar 

  269. Li LL, Zhang R, Yin L, Zheng K, Qin W, Selvin PR, Lu Y (2012) Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed Engl 51(25):6121–6125

    CAS  Google Scholar 

  270. Nagarajan S, Zhang Y (2011) Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging. Nanotechnology 22(39):395101

    Google Scholar 

  271. Chen DQ, Yu YL, Huang F, Yang AP, Wang YS (2011) Lanthanide activator doped NaYb(1-x)Gd(x)F4 nanocrystals with tunable down-, up-conversion luminescence and paramagnetic properties. J Mater Chem 21(17):6186–6192

    CAS  Google Scholar 

  272. Chen F, Zhang S, Bu W, Liu X, Chen Y, He Q, Zhu M, Zhang L, Zhou L, Peng W, Shi J (2010) A “Neck-Formation” Strategy for an Antiquenching Magnetic/Upconversion Fluorescent Bimodal Cancer Probe. Chem-Eur J 16(37):11254–11260

    CAS  Google Scholar 

  273. Chen H, Qi B, Moore T, Colvin DC, Crawford T, Gore JC, Alexis F, Mefford OT, Anker JN (2013) Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small. doi:10.1002/smll.201300828

    Google Scholar 

  274. Das GK, Heng BC, Ng S-C, White T, Loo JSC, D’Silva L, Padmanabhan P, Bhakoo KK, Selvan ST, Tan TTY (2010) Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir 26(11):8959–8965

    CAS  Google Scholar 

  275. Debasu ML, Ananias D, Pinho SLC, Geraldes C, Carlos LD, Rocha J (2012) (Gd, Yb, Tb)PO4 up-conversion nanocrystals for bimodal luminescence-MR imaging. Nanoscale 4(16):5154–5162

    CAS  Google Scholar 

  276. Hou Y, Yin ZF, Xin HL, Su YH, Yang HG (2012) Fe3O4 modified up-conversion luminescent nanocrystals for biological applications. Chin J Chem 30(12):2774–2778

    CAS  Google Scholar 

  277. Li FF, Li CG, Liu XM, Chen Y, Bai TY, Wang L, Shi Z, Feng SH (2012) Hydrophilic, upconverting, multicolor, lanthanide-doped NaGdF4 Nanocrystals as Potential multifunctional bioprobes. Chem-Eur J 18(37):11641–11646

    CAS  Google Scholar 

  278. Liu C, Gao Z, Zeng J, Hou Y, Fang F, Li Y, Qiao R, Shen L, Lei H, Yang W, Gao M (2013) Magnetic/upconversion fluorescent NaGdF4:Yb, Er Nanoparticle-Based Dual-Modal molecular probes for imaging tiny tumors in vivo. ACS Nano. doi:10.1021/nn4030898

    Google Scholar 

  279. Lu Q, Wei DX, Cheng JJ, Xu JR, Zhu J (2012) A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties. J Solid State Chem 192:75–80

    CAS  Google Scholar 

  280. Mi CC, Zhang JP, Gao HY, Wu XL, Wang M, Wu YF, Di YQ, Xu ZR, Mao CB, Xu SK (2010) Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb, Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells. Nanoscale 2(7):1141–1148

    CAS  Google Scholar 

  281. Paik T, Gordon TR, Prantner AM, Yun H, Murray CB (2013) Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano 7(3):2850–2859

    CAS  Google Scholar 

  282. Wang Y, Ji L, Zhang BB, Yin PH, Qiu YY, Song DQ, Zhou JY, Li Q (2013) Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging. Nanotechnology 24(17):175101

    Google Scholar 

  283. Wilhelm S, Hirsch T, Scheucher E, Mayr T, Wolfbeis OS (2011) Magnetic nanosensor particles in luminescence upconversion capability. Angew Chem Int Ed Engl 50(37):A59–62

    Google Scholar 

  284. Wong HT, Vetrone F, Naccache R, Chan HLW, Hao JH, Capobianco JA (2011) Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J Mater Chem 21(41):16589–16596

    CAS  Google Scholar 

  285. Zeng S, Tsang MK, Chan CF, Wong KL, Fei B, Hao J (2012) Dual-modal fluorescent/magnetic bioprobes based on small sized upconversion nanoparticles of amine-functionalized BaGdF5:Yb/Er. Nanoscale 4(16):5118–5124

    CAS  Google Scholar 

  286. Chen G, Ohulchanskyy TY, Law WC, Agren H, Prasad PN (2011) Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 3(5):2003–2008

    CAS  Google Scholar 

  287. Shen J, Sun L-D, Zhang Y-W, Yan C-H (2010) Superparamagnetic and upconversion emitting Fe3O4/NaYF4: Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem Commun 46(31):5731–5733

    CAS  Google Scholar 

  288. Zhang L, Wang YS, Yang Y, Zhang F, Dong WF, Zhou SY, Pei WH, Chen HD, Sun HB (2012) Magnetic/upconversion luminescent mesoparticles of Fe3O4@LaF3:Yb3+, Er3+ for dual-modal bioimaging. Chem Commun 48(91):11238–11240

    CAS  Google Scholar 

  289. Xiao Q, Bu W, Ren Q, Zhang S, Xing H, Chen F, Li M, Zheng X, Hua Y, Zhou L, Peng W, Qu H, Wang Z, Zhao K, Shi J (2012) Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging. Biomaterials 33(30):7530–7539

    CAS  Google Scholar 

  290. Xing HY, Bu WB, Ren QG, Zheng XP, Li M, Zhang SJ, Qu HY, Wang Z, Hua YQ, Zhao KL, Zhou LP, Peng WJ, Shi JL (2012) A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials 33(21):5384–5393

    CAS  Google Scholar 

  291. Zhang G, Liu Y, Yuan Q, Zong C, Liu J, Lu L (2011) Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties. Nanoscale 3(10):4365–4371

    CAS  Google Scholar 

  292. Liu Z, Li Z, Liu J, Gu S, Yuan Q, Ren J, Qu X (2012) Long-circulating Er3 + -doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent. Biomaterials 33(28):6748–6757

    CAS  Google Scholar 

  293. Liu FY, He XX, Liu L, You HP, Zhang HM, Wang ZX (2013) Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging. Biomaterials 34(21):5218–5225

    CAS  Google Scholar 

  294. Xia A, Chen M, Gao Y, Wu D, Feng W, Li F (2012) Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials 33(21):5394–5405

    CAS  Google Scholar 

  295. Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F (2012) Core-shell Fe3O4@NaLuF4:Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33(18):4618–4627

    CAS  Google Scholar 

  296. Liu Z, Pu F, Huang S, Yuan QH, Ren JS, Qu XG (2013) Long-circulating Gd2O3:Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials 34(6):1712–1721

    CAS  Google Scholar 

  297. Sun Y, Yu M, Liang S, Zhang Y, Li C, Mou T, Yang W, Zhang X, Li B, Huang C, Li F (2011) Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32(11):2999–3007

    CAS  Google Scholar 

  298. Liu Q, Sun Y, Li C, Zhou J, Li C, Yang T, Zhang X, Yi T, Wu D, Li F (2011) 18 F-Labeled magnetic-upconversion nanophosphors via rare-Earth cation-assisted ligand assembly. ACS Nano 5(4):3146–3157

    CAS  Google Scholar 

  299. Sun Y, Liu Q, Peng J, Feng W, Zhang Y, Yang P, Li F (2013) Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Biomaterials 34(9):2289–2295

    CAS  Google Scholar 

  300. Achatz D, Ali R, Wolfbeis O (2011) Luminescent Chemical Sensing, Biosensing, and Screening Using Upconverting Nanoparticles. In: Prodi L, Montalti M, Zaccheroni N (eds) Luminescence Applied in Sensor Science, vol 300. Topics in Current Chemistry. Springer Berlin Heidelberg, pp 29–50

  301. Deng R, Xie X, Vendrell M, Chang YT, Liu X (2011) Intracellular glutathione detection using MnO(2)-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133(50):20168–20171

    CAS  Google Scholar 

  302. Corstjens P, Zuiderwijk M, Nilsson M, Feindt H, Niedbala RS, Tanke HJ (2003) Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. Anal Biochem 312(2):191–200

    CAS  Google Scholar 

  303. van de Rijke F, Zijlmans H, Li S, Vail T, Raap AK, Niedbala RS, Tanke HJ (2001) Up-converting phosphor reporters for nucleic acid microarrays. Nat Biotechnol 19(3):273–276

    Google Scholar 

  304. Wu S, Duan N, Zhu C, Ma X, Wang M, Wang Z (2011) Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosens Bioelectron 30(1):35–42

    CAS  Google Scholar 

  305. Liu C, Wang Z, Jia H, Li Z (2011) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem Commun 47(16):4661–4663

    CAS  Google Scholar 

  306. Kumar M, Zhang P (2009) Highly Sensitive and Selective Label-Free Optical Detection of DNA Hybridization Based on Photon Upconverting Nanoparticles. Langmuir 25(11):6024–6027

    CAS  Google Scholar 

  307. Wang L, Li Y (2006) Green upconversion nanocrystals for DNA detection. Chem Commun 24:2557–2559

    Google Scholar 

  308. Zhang F, Shi Q, Zhang Y, Shi Y, Ding K, Zhao D, Stucky GD (2011) Fluorescence Upconversion Microbarcodes for Multiplexed Biological Detection: Nucleic Acid Encoding. Adv Mater 23(33):3775–3779

    CAS  Google Scholar 

  309. Jiang S, Zhang Y (2010) Upconversion nanoparticle-based FRET system for study of siRNA in live cells. Langmuir 26(9):6689–6694

    CAS  Google Scholar 

  310. Wang Y, Shen P, Li C, Wang Y, Liu Z (2012) Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood. Anal Chem 84(3):1466–1473

    CAS  Google Scholar 

  311. Kuningas K, Ukonaho T, Pakkila H, Rantanen T, Rosenberg J, Lovgren T, Soukka T (2006) Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal Chem 78(13):4690–4696

    CAS  Google Scholar 

  312. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24(9):1226–1231

    CAS  Google Scholar 

  313. Guo H, Hao R, Qian H, Sun S, Sun D, Yin H, Liu Z, Liu X (2012) Upconversion nanoparticles modified with aminosilanes as carriers of DNA vaccine for foot-and-mouth disease. Appl Microbiol Biotechnol 95(5):1253–1263

    CAS  Google Scholar 

  314. Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD (2012) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12(1):61–67

    CAS  Google Scholar 

  315. Xu Z, Li C, Pa M, Hou Z, Yang D, Kang X, Lin J (2011) Facile synthesis of an up-conversion luminescent and mesoporous Gd2O3: Er3 + @nSiO2@mSiO2 nanocomposite as a drug carrier. Nanoscale 3(2):661–667

    CAS  Google Scholar 

  316. Li C, Yang D, Pa M, Chen Y, Wu Y, Hou Z, Dai Y, Zhao J, Sui C, Lin J (2013) Multifunctional Upconversion Mesoporous Silica Nanostructures for Dual Modal Imaging and In vivo Drug Delivery. Small. doi:10.1002/smll.201301093

    Google Scholar 

  317. Hou Z, Li C, Ma P, Li G, Cheng Z, Peng C, Yang D, Yang P, Lin J (2011) Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3 + @Silica Fiber Nanocomposite. Adv Funct Mater 21(12):2356–2365

    CAS  Google Scholar 

  318. Hou Z, Li X, Li C, Dai Y, Pa M, Zhang X, Kang X, Cheng Z, Lin J (2013) Electrospun Upconversion Composite Fibers as Dual Drugs Delivery System with Individual Release Properties. Langmuir 29(30):9473–9482

    CAS  Google Scholar 

  319. Kang X, Cheng Z, Li C, Yang D, Shang M, Pa M, Li G, Liu N, Lin J (2011) Core–Shell Structured Up-Conversion Luminescent and Mesoporous NaYF4:Yb3+/Er3 + @nSiO2@mSiO2 Nanospheres as Carriers for Drug Delivery. J Phys Chem C 115(32):15801–15811

    CAS  Google Scholar 

  320. Dai YL, Ma PA, Cheng ZY, Kang XJ, Zhang X, Hou ZY, Li CX, Yang DM, Zhai XF, Lin J (2012) Up-Conversion Cell Imaging and pH-Induced Thermally Controlled Drug Release from NaYF4:Yb3+/Er3 + @Hydrogel Core-Shell Hybrid Microspheres. ACS Nano 6(4):3327–3338

    CAS  Google Scholar 

  321. Hou ZY, Li CX, Ma PA, Cheng ZY, Li XJ, Zhang X, Dai YL, Yang DM, Lian HZ, Lin J (2012) Up-Conversion Luminescent and Porous NaYF4:Yb3+, Er3 + @SiO2 Nanocomposite Fibers for Anti-Cancer Drug Delivery and Cell Imaging. Adv Funct Mater 22(13):2713–2722

    CAS  Google Scholar 

  322. Dai YL, Kang XJ, Yang DM, Li XJ, Zhang X, Li CX, Hou ZY, Cheng ZY, Ma PA, Lin J (2013) Platinum (IV) Pro-Drug Conjugated NaYF4:Yb3+/Er3 + Nanoparticles for Targeted Drug Delivery and Up-Conversion Cell Imaging. Advanced Healthcare Materials 2(4):562–567

    CAS  Google Scholar 

  323. Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chem-Eur J 18(8):2335–2341

    CAS  Google Scholar 

  324. Pa M, Xiao H, Li X, Li C, Dai Y, Cheng Z, Jing X, Lin J (2013) Rational Design of Multifunctional Upconversion Nanocrystals/Polymer Nanocomposites for Cisplatin (IV) Delivery and Biomedical Imaging. Adv Mater:n/a-n/a. doi:10.1002/adma.201301713

    Google Scholar 

  325. Kang XJ, Yang DM, Dai YL, Shang MM, Cheng ZY, Zhang X, Lian HZ, Ma PA, Lin J (2013) Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release. Nanoscale 5(1):253–261

    CAS  Google Scholar 

  326. Dong L, An D, Gong M, Lu Y, Gao H-L, Xu Y-J, Yu S-H (2013) PEGylated Upconverting Luminescent Hollow Nanospheres for Drug Delivery and In vivo Imaging. Small. doi:10.1002/smll.201300433

    Google Scholar 

  327. Yang Y, Velmurugan B, Liu X, Xing B (2013) NIR Photoresponsive Crosslinked Upconverting Nanocarriers Toward Selective Intracellular Drug Release. Small. doi:10.1002/smll.201201765

    Google Scholar 

  328. Cheng Z, Chai R, Ma P, Dai Y, Kang X, Lian H, Hou Z, Li C, Lin J (2013) Multiwalled carbon nanotubes and NaYF4:Yb3+/Er3+ Nanoparticle-Doped Bilayer hydrogel for concurrent nir-triggered drug release and up-conversion luminescence tagging. Langmuir 29(30):9573–9580

    CAS  Google Scholar 

  329. Yang Y, Liu F, Liu X, Xing B (2013) NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles. Nanoscale 5(1):231–238

    CAS  Google Scholar 

  330. Koo YE, Fan W, Hah H, Xu H, Orringer D, Ross B, Rehemtulla A, Philbert MA, Kopelman R (2007) Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy. Appl Opt 46(10):1924–1930

    CAS  Google Scholar 

  331. Lee YE, Kopelman R (2011) Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol 726:151–178

    CAS  Google Scholar 

  332. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YE, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686

    CAS  Google Scholar 

  333. Gupta A, Wang S, Pera P, Rao KV, Patel N, Ohulchanskyy TY, Missert J, Morgan J, Koo-Lee YE, Kopelman R, Pandey RK (2012) Multifunctional nanoplatforms for fluorescence imaging and photodynamic therapy developed by post-loading photosensitizer and fluorophore to polyacrylamide nanoparticles. Nanomedicine-UK 8(6):941–950

    CAS  Google Scholar 

  334. Wang S, Fan W, Kim G, Hah HJ, Lee YE, Kopelman R, Ethirajan M, Gupta A, Goswami LN, Pera P, Morgan J, Pandey RK (2011) Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy. Lasers Surg Med 43(7):686–695

    Google Scholar 

  335. Zhang P, Steelant W, Kumar M, Scholfield M (2007) Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation. J Am Chem Soc 129(15):4526–4527

    CAS  Google Scholar 

  336. Carling C-J, Nourmohammadian F, Boyer J-C, Branda NR (2010) Remote-Control Photorelease of Caged Compounds Using Near-Infrared Light and Upconverting Nanoparticles. Angew Chem Int Ed 49(22):3782–3785

    CAS  Google Scholar 

  337. Chen F, Zhang S, Bu W, Chen Y, Xiao Q, Liu J, Xing H, Zhou L, Peng W, Shi J (2012) A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chem-Eur J 18(23):7082–7090

    CAS  Google Scholar 

  338. Wang FF, Yang XJ, Ma L, Huang BR, Na N, Ying CE, He DC, Ouyang J (2012) Multifunctional up-converting nanocomposites with multimodal imaging and photosensitization at near-infrared excitation. J Mater Chem 22(47):24597–24604

    CAS  Google Scholar 

  339. Zhao ZX, Han YN, Lin CH, Hu D, Wang F, Chen XL, Chen Z, Zheng NF (2012) Multifunctional Core-Shell Upconverting Nanoparticles for Imaging and Photodynamic Therapy of Liver Cancer Cells. Chem-Asian J 7(4):830–837

    CAS  Google Scholar 

  340. Tian G, Ren WL, Yan L, Jian S, Gu ZJ, Zhou LJ, Jin S, Yin WY, Li SJ, Zhao YL (2013) Red-Emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation. Small 9(11):1929–1938

    CAS  Google Scholar 

  341. Il Park Y, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Yoon SY, Suh YD, Lee SH, Hyeon T (2012) Luminescence/magnetic resonance imaging and photodynamic therapy based on upconverting nanoparticles. In: Choi SH, Choy JH, Lee U, Varadan VK (eds) Nanosystems in Engineering and Medicine, vol 8548. Proceedings of SPIE. Spie-Int Soc Optical Engineering, Bellingham. doi:10.1117/12.999411

  342. Lim ME, Lee YL, Zhang Y, Chu JJ (2012) Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 33(6):1912–1920

    CAS  Google Scholar 

  343. Chatterjee DK, Yong Z (2008) Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine-UK 3(1):73–82

    CAS  Google Scholar 

  344. Guo H, Qian H, Idris NM, Zhang Y (2010) Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine-UK 6(3):486–495

    CAS  Google Scholar 

  345. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580–1585

    CAS  Google Scholar 

  346. Ungun B, Prud’homme RK, Budijon SJ, Shan J, Lim SF, Ju Y, Austin R (2009) Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Express 17(1):80–86

    CAS  Google Scholar 

  347. Hah HJ, Kim G, Lee YE, Orringer DA, Sagher O, Philbert MA, Kopelman R (2011) Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy. Macromol Biosci 11(1):90–99

    CAS  Google Scholar 

  348. Qin M, Hah HJ, Kim G, Nie G, Lee YE, Kopelman R (2011) Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem Photobiol Sci 10(5):832–841

    CAS  Google Scholar 

  349. Tang W, Xu H, Kopelman R, Philbert MA (2005) Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol 81(2):242–249

    CAS  Google Scholar 

  350. Tang W, Xu H, Park EJ, Philbert MA, Kopelman R (2008) Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 369(2):579–583

    CAS  Google Scholar 

  351. Wang C, Cheng L, Liu Y, Wang X, Ma X, Deng Z, Li Y, Liu Z (2013) Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. Adv Funct Mater 23(24):3077–3086

    CAS  Google Scholar 

  352. Yan B, Boyer JC, Habault D, Branda NR, Zhao Y (2012) Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J Am Chem Soc 134(40):16558–16561

    CAS  Google Scholar 

  353. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J Am Chem Soc 128(6):2115–2120

    CAS  Google Scholar 

  354. Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, Liu Z (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33(7):2215–2222

    CAS  Google Scholar 

  355. Shan GB, Weissleder R, Hilderbrand SA (2013) Upconverting Organic Dye Doped Core-Shell Nano-Composites for Dual-Modality NIR Imaging and Photo-Thermal Therapy. Theranostics 3(4):267–274

    CAS  Google Scholar 

  356. Xing HY, Zheng XP, Ren QG, Bu WB, Ge WQ, Xiao QF, Zhang SJ, Wei CY, Qu HY, Wang Z, Hua YQ, Zhou LP, Peng WJ, Zhao KL, Shi JL (2013) Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Scientific Reports 3:1751

    CAS  Google Scholar 

  357. Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun 28:4188–4190

    Google Scholar 

  358. Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31(27):7078–7085

    CAS  Google Scholar 

  359. Bae YM, Park YI, Nam SH, Kim JH, Lee K, Kim HM, Yoo B, Choi JS, Lee KT, Hyeon T, Suh YD (2012) Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 33(35):9080–9086

    CAS  Google Scholar 

  360. Zhou JC, Yang ZL, Dong W, Tang RJ, Sun LD, Yan CH (2011) Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals. Biomaterials 32(34):9059–9067

    CAS  Google Scholar 

  361. Wang K, Ma JB, He M, Gao G, Xu H, Sang J, Wang YX, Zhao BQ, Cui DX (2013) Toxicity Assessments of Near-infrared Upconversion Luminescent LaF3:Yb, Er in Early Development of Zebrafish Embryos. Theranostics 3(4):258–266

    CAS  Google Scholar 

  362. Ostrowski AD, Chan EM, Gargas DJ, Katz EM, Han G, Schuck PJ, Milliron DJ, Cohen BE (2012) Controlled synthesis and single-particle imaging of bright, Sub-10 nm Lanthanide-Doped upconverting nanocrystals. ACS Nano 6(3):2686–2692

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y. Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays. Microchim Acta 181, 263–294 (2014). https://doi.org/10.1007/s00604-013-1139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1139-8

Keywords

Navigation