Skip to main content
Log in

Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nanocomposite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly efficient gas sensor is described based on the use of a nanocomposite fabricated from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and ultra-large graphene oxide (UL-GO). The nanocomposite was placed by drop casting in high uniformity on interdigitated gold electrodes over a large area of silicon substrate and investigated for its response to volatile organic compounds (VOCs) at room temperature. Monolayers of UL-GOs were synthesized based on a novel solution-phase method involving pre-exfoliation of graphite flakes. The nanocomposite was optimized in terms of composition, and the resulting vapor sensor (containing 0.04 wt% of UL-GO) exhibits strong response to various VOC vapors. The improved gas-sensing performance is attributed to several effects, viz. (a) an enhanced transport of charge carriers, probably a result of the weakening of columbic attraction between PEDOT and PSS by the functional groups on the UL-GO sheets; (b) the increase in the specific surface area on adding UL-GO sheets; and (c) enhanced interactions between the sensing film and VOC molecules via the network of π-electrons. The sensitivity, response and recovery times of the PEDOT-PSS/UL-GO nanocomposite gas sensor with 0.04 wt% of UL-GO are 11.3 %, 3.2 s, and 16 s, respectively. At a methanol vapor concentration as low as 35 ppm, this is an improvement by factors of 110, 10, and 6 respectively, compared to a PEDOT-PSS reference gas sensor without UL-GO.

PEDOT-based sensors for VOCs are presented that exhibit better sensivity, and shorter response and recovery times to methanol than previously known sensors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Srivastava P, Pandit G, Sharma S, Rao AM (2000) Volatile organic compounds in indoor environments in Mumbai, India. Sci Total Environ 255(1):161–168

    Article  CAS  Google Scholar 

  2. Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Liu L, Peng C, Jin Z, Xu C (2009) Simple, rapid, sensitive, and versatile SWNT− paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9(12):4147–4152

    Article  CAS  Google Scholar 

  3. Arasaradnam RP, Quraishi N, Kyrou I, Nwokolo CU, Joseph M, Kumar S, Bardhan KD, Covington JA (2011) Insights into‘fermentonomics’: evaluation of volatile organic compounds (VOCs) in human disease using an electronic‘e-nose’. J Med Eng Technol 35(2):87–91

    Article  CAS  Google Scholar 

  4. Casalinuovo IA, Di Pierro D, Coletta M, Di Francesco P (2006) Application of electronic noses for disease diagnosis and food spoilage detection. Sensors 6(11):1428–1439

    Article  Google Scholar 

  5. Peris M, Escuder-Gilabert L (2009) A 21st century technique for food control: electronic noses. Anal Chim Acta 638(1):1–15

    Article  CAS  Google Scholar 

  6. Tung TT, Castro M, Kim TY, Suh KS, Feller J-F (2012) Graphene quantum resistive sensing skin for the detection of alteration biomarkers. J Mater Chem 22(40):21754–21766

    Article  CAS  Google Scholar 

  7. Nardes AM, Kemerink M, De Kok M, Vinken E, Maturova K, Janssen R (2008) Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org Electron 9(5):727–734

    Article  CAS  Google Scholar 

  8. Wu X, Li F, Wu W, Guo T (2014) Flexible organic light emitting diodes based on double-layered graphene/PEDOT: PSS conductive film formed by spray-coating. Vacuum 101:53–56

    Article  CAS  Google Scholar 

  9. Frank I, Tanenbaum DM, Van der Zande A, McEuen PL (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25(6):2558–2561

    Article  CAS  Google Scholar 

  10. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  11. Cheng Z, Li Q, Li Z, Zhou Q, Fang Y (2010) Suspended graphene sensors with improved signal and reduced noise. Nano Lett 10(5):1864–1868

    Article  CAS  Google Scholar 

  12. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140

    Article  CAS  Google Scholar 

  13. Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson AC (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9(4):1472–1475

    Article  CAS  Google Scholar 

  14. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Article  CAS  Google Scholar 

  15. Chang H, Lee JD, Lee SM, Lee YH (2001) Adsorption of NH 3 and NO 2 molecules on carbon nanotubes. Appl Phys Lett 79(23):3863–3865

    Article  CAS  Google Scholar 

  16. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306

    Article  CAS  Google Scholar 

  17. Ghosh A, Late DJ, Panchakarla L, Govindaraj A, Rao C (2009) NO2 and humidity sensing characteristics of few-layer graphenes. J Exp Nanosci 4(4):313–322

    Article  CAS  Google Scholar 

  18. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M (2008) Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321(5897):1815–1817

    Article  CAS  Google Scholar 

  19. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    Article  CAS  Google Scholar 

  20. Tung TT, Kim TY, Shim JP, Yang WS, Kim H, Suh KS (2011) Poly (ionic liquid)-stabilized graphene sheets and their hybrid with poly (3, 4-ethylenedioxythiophene). Org Electron 12(12):2215–2224

    Article  CAS  Google Scholar 

  21. Dan Y, Cao Y, Mallouk TE, Evoy S, Johnson AC (2009) Gas sensing properties of single conducting polymer nanowires and the effect of temperature. Nanotechnology 20(43):434014

    Article  Google Scholar 

  22. Choi J, Lee J, Choi J, Jung D, Shim SE (2010) Electrospun PEDOT: PSS/PVP nanofibers as the chemiresistor in chemical vapour sensing. Synth Met 160(13):1415–1421

    Article  CAS  Google Scholar 

  23. Dehsari HS, Shalamzari EK, Gavgani JN, Taromi FA, Ghanbary S (2014) Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv 4(98):55067–55076

    Article  CAS  Google Scholar 

  24. Aboutalebi SH, Gudarzi MM, Zheng QB, Kim JK (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21(15):2978–2988

    Article  CAS  Google Scholar 

  25. Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254

    Article  CAS  Google Scholar 

  26. Zhou N, Meng N, Ma Y, Liao X, Zhang J, Li L, Shen J (2009) Evaluation of antithrombogenic and antibacterial activities of a graphite oxide/heparin–benzalkonium chloride composite. Carbon 47(5):1343–1350

    Article  CAS  Google Scholar 

  27. Wu X, Liu J, Wu D, Zhao Y, Shi X, Wang J, Huang S, He G (2014) Highly conductive and uniform graphene oxide modified PEDOT: PSS electrodes for ITO-Free organic light emitting diodes. J Mater Chem C 2(20):4044–4050

    Article  CAS  Google Scholar 

  28. Yoon H, Chang M, Jang J (2007) Formation of 1D poly (3, 4‐ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv Funct Mater 17(3):431–436

    Article  CAS  Google Scholar 

  29. Wang X, Sun X, Hu PA, Zhang J, Wang L, Feng W, Lei S, Yang B, Cao W (2013) Colorimetric sensor based on self‐assembled Polydiacetylene/graphene‐stacked composite film for vapor‐phase volatile organic compounds. Adv Funct Mater 23(48):6044–6050

    Article  CAS  Google Scholar 

  30. Feller J-F, Lu J, Zhang K, Kumar B, Castro M, Gatt N, Choi H (2011) Novel architecture of carbon nanotube decorated poly (methyl methacrylate) microbead vapour sensors assembled by spray layer by layer. J Mater Chem 21(12):4142–4149

    Article  CAS  Google Scholar 

  31. Dan Y, Cao Y, Mallouk TE, Johnson AT, Evoy S (2007) Dielectrophoretically assembled polymer nanowires for gas sensing. Sensors Actuators B Chem 125(1):55–59

    Article  CAS  Google Scholar 

  32. Kumar B, Feller J-F, Castro M, Lu J (2010) Conductive bio-polymer nano-composites (CPC): chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing. Talanta 81(3):908–915

    Article  CAS  Google Scholar 

  33. Tung TT, Castro M, Feller J-F, Kim TY, Suh KS (2013) Hybrid film of chemically modified graphene and vapor-phase-polymerized PEDOT for electronic nose applications. Org Electron 14(11):2789–2794

    Article  CAS  Google Scholar 

  34. Tung TT, Castro M, Kim TY, Suh KS, Feller J-F (2014) High stability silver nanoparticles–graphene/poly (ionic liquid)-based chemoresistive sensors for volatile organic compounds’ detection. Anal Bioanal Chem 406(16):3995–4004

    Article  CAS  Google Scholar 

  35. Tung TT, Castro M, Pillin I, Kim TY, Suh KS, Feller J-F (2014) Graphene–Fe 3 O 4/PIL–PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors. Carbon 74:104–112

    Article  CAS  Google Scholar 

  36. Suchea M, Katsarakis N, Christoulakis S, Nikolopoulou S, Kiriakidis G (2006) Low temperature indium oxide gas sensors. Sensors Actuators B Chem 118(1):135–141

    Article  CAS  Google Scholar 

  37. Choi KS, Liu F, Choi JS, Seo TS (2010) Fabrication of free-standing multilayered graphene and poly (3, 4-ethylenedioxythiophene) composite films with enhanced conductive and mechanical properties. Langmuir 26(15):12902–12908

    Article  CAS  Google Scholar 

  38. Romero HE, Joshi P, Gupta AK, Gutierrez HR, Cole MW, Tadigadapa SA, Eklund PC (2009) Adsorption of ammonia on graphene. Nanotechnology 20(24):245501

    Article  Google Scholar 

  39. Parmar M, Balamurugan C, Lee D-W (2013) PANI and graphene/PANI nanocomposite films—comparative toluene Gas sensing behavior. Sensors 13(12):16611–16624

    Article  Google Scholar 

  40. Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Kong ES-W, Wei H, Zhang Y (2012) Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22(42):22488–22495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farmarz Afshar Taromi.

Additional information

Amirhossein Hasani, Hamed Sharifi Dehsari and Jaber Nasrollah Gavgani contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasani, A., Dehsari, H.S., Gavgani, J.N. et al. Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nanocomposite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large graphene oxide. Microchim Acta 182, 1551–1559 (2015). https://doi.org/10.1007/s00604-015-1487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1487-7

Keywords

Navigation