Skip to main content
Log in

Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a nonenzymatic electrochemical sensor for uric acid. It is based on a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin) that was prepared in-situ by electropolymerization. The functionalized multi-walled carbon nanotubes and the surface morphology of the modified electrodes were characterized by transmission electronic microscopy and scanning electron microscopy. The electrochemical response of uric acid was studied by cyclic voltammetry and linear sweep voltammetry. The effects of scan rate, pH value, electropolymerization cycles and accumulation time were also studied. Under optimized experimental conditions and at a working voltage of 500 mV vs. Ag/AgCl (3 M KCl), response to uric acid is linear in the 0.6 to 400 μΜ and in the 0.4 to 1 mΜ concentration ranges, and the detection limit is 0.3 μΜ (at an S/N of 3). The electrode was successfully applied to the detection of uric acid in (spiked) human urine samples.

SEM images of (a) carbon ionic liquid electrode (CILE) (b) MWNT-CILE (c) β-CD/CILE (d) β-CD/ MWNT-CILE. The surfaces of carbon ionic liquid electrode (CILE) (a) and MWNT-CILE (b) were homogenous and no separated carbon layers can be observed; After β- cyclodextrin (CD) was modified on CILE and MWNT-CILE, the surfaces of β-CD modified electrodes (c and d) exhibited loose and porous morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raab LS, Decker GL, Jonas AJ, Kaetzel MA, Dedman JR (1991) Glucocorticoid regulation of rat liver urate oxidase. J Cell Biochem 47:18–30

    Article  CAS  Google Scholar 

  2. Chen XM, Wu GH, Cai ZX, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  CAS  Google Scholar 

  3. Tian L, Zhang BX, Sun D, Chen RZ, Wang BB, Li TJ (2014) A thin poly(acridine orange) film containing reduced graphene oxide for voltammetric simultaneous sensing of ascorbic acid and uric acid. Microchim Acta 181:589–595

    Article  CAS  Google Scholar 

  4. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008

    Article  CAS  Google Scholar 

  5. Elyasi M, Khalilzadeh MA, Karimi-Maleh H (2013) High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem 141:4311–4317

    Article  CAS  Google Scholar 

  6. Karimi-Maleh H, Rostami S, Gupta VK, Fouladgar M (2015) Evaluation of ZnO nanoparticle ionic liquid composite as a voltammetric sensing of isoprenaline in the presence of aspirin for liquid phase determination. J Mol Liq 201:102–107

    Article  CAS  Google Scholar 

  7. Baghizadeh A, Karimi-Maleh H, Khoshnama Z, Hassankhani A, Abbasghorbani M (2015) A voltammetric sensor for simultaneous determination of Vitamin C and Vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal Methods 8:549–557

    Article  Google Scholar 

  8. Bijad M, Karimi-Maleh H, Khalilzadeh MA (2013) Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal Methods 6:1639–1647

    Article  Google Scholar 

  9. Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater 183:402–409

    Article  CAS  Google Scholar 

  10. Faridbod F, Ganjali MR, Larijani B, Norouzi P (2009) Multi-walled carbon nanotubes (MWCNTs) and room temperature ionic liquids (RTILs) carbon paste Er(III) sensor based on a new derivative of dansyl chloride. Electrochim Acta 55:234–239

    Article  CAS  Google Scholar 

  11. Mazloum-Ardakani M, Khoshroo A (2013) An electrochemical study of benzofuran derivative in modified electrode-based CNT/ionic liquids for determining nanomolar concentrations of hydrazine. Electrochim Acta 103:77–84

    Article  CAS  Google Scholar 

  12. Dai H, Wang YM, Wu XP, Zhang L, Chen GN (2009) An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode. Biosens Bioelectron 24:1230–1234

    Article  CAS  Google Scholar 

  13. Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. Mater Sci Eng C 35:8–14

    Article  CAS  Google Scholar 

  14. Beitollah H, Goodarzian M, Khalilzadeh MA, Karimi-Maleh H, Hassanzadeh M, Tajbakhsh M (2012) Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. J Mol Liq 173:137–143

    Article  CAS  Google Scholar 

  15. Afkhami A, Madrakian T, Shirzadmehr A, Tabatabaee M, Bagheri H (2012) New Schiff base-carbon nanotube-nanosilica-ionic liquid as a high performance sensing material of a potentiometric sensor for nanomolar determination of cerium(III) ions. Sens Actuator, B 174:237–244

    Article  CAS  Google Scholar 

  16. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1918

    Article  CAS  Google Scholar 

  17. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754

    Article  CAS  Google Scholar 

  18. Samuel PK, Kimio S, Toshiyuki K, Takashi I, Toshio S (2004) Synthesis and characterization of an ultrathin polyion complex membrane containing β-cyclodextrin for separation of organic isomers. J Membr Sci 230:171–174

    Article  Google Scholar 

  19. Zhang L, Lin XQ (2001) Covalent modification of glassy carbon electrode with glutamic acid for simultaneous determination of uric acid and ascorbic acid. Analyst 126:367–370

    Article  CAS  Google Scholar 

  20. Wu SG, Wang TL, Gao ZY, Xu HH, Zhou BN, Wang CQ (2008) Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a β-cyclodextrin modified copolymer of sulfanilic acid and N-acetylaniline. Biosens Bioelectron 23:1776–1780

    Article  CAS  Google Scholar 

  21. Zheng LZ, Wu SG, Lin XQ, Nie L, Rui L (2001) Selective determination of uric acid by using a β-cyclodextrin modified electrode. Electroanalysis 13:1351–1354

    Article  CAS  Google Scholar 

  22. Ramírez-Berriozabal M, Galicia L, Gutiérrez-Granados S, Cortes JS, Herrasti P (2008) Selective electrochemical determination of uric acid in the presence of ascorbic acid using a carbon paste electrode modified with β-cyclodextrin. Electroanalysis 20:1678–1683

    Article  Google Scholar 

  23. Kim B, Sigmund WM (2004) Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir 20:8239–8242

    Article  CAS  Google Scholar 

  24. Xu Q, Wang SF (2005) Electrocatalytic oxidation and direct determination of L-Tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchim Acta 151:47–52

    Article  CAS  Google Scholar 

  25. Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ningxia Higher School Scientific Research Project (No. NGY2013080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghong Li or Xinsheng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhai, X., Wang, H. et al. Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin). Microchim Acta 182, 1877–1884 (2015). https://doi.org/10.1007/s00604-015-1522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1522-8

Keywords

Navigation