Skip to main content
Log in

Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons from water and soil

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanoporous carbon derived from an aluminum-based metal-organic framework was deposited on stainless steel wires in a sol–gel matrix. The resulting fibers were applied to the solid-phase microextraction of the polycyclic aromatic hydrocarbons (PAHs) naphthalene, acenaphthene, fluorene, phenanthrene and anthracene from water and soil samples. The fiber was then directly inserted into the GC injector and the PAHs were quantified by GC-MS. The effects of salt addition, extraction temperature, extraction time, sample volume and desorption conditions on the extraction efficiency were optimized. A linear response to the analytes was observed in the 0.1 to 12 μg∙L−1 range for water samples, and in the 0.6 to 30 μg∙kg−1 for soil samples, with the correlation coefficients ranging from 0.9934 to 0.9985. The limits of detection ranged from 5.0 to 20 ng∙L−1 for water samples, and from 30 to 90 ng∙kg−1 for soil samples. The recoveries of spiked samples were between 72.4 and 108.0 %, and the precision, expressed as the relative standard deviations, is <12.8 %.

A MOF derived nanoporous carbon coated fiber for use in solid-phase microextraction was prepared via sol–gel technology. The coated fiber has a porous, rough and wrinkled structure, and shows a high thermal stability, good extraction repeatability and long lifetime. The established HS-SPME-GC-MS method is suitable for the determination of the PAHs from water and soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  2. Mehdinia A, Aziz-Zanjani MO (2013) Recent advances in nanomaterials utilized in fiber coatings for solid-phase microextraction. Trends Anal Chem 42:205–215

    Article  CAS  Google Scholar 

  3. Vuckovic D (2013) High-throughput solid-phase microextraction in multi-well-plate format. Trends Anal Chem 45:136–153

    Article  CAS  Google Scholar 

  4. Sun Y, Zhang W-Y, Xing J, Wang C-M (2011) Solid-phase microfibers based on modified single-walled carbon nanotubes for extraction of chlorophenols and organochlorine pesticides. Microchim Acta 173:223–229

    Article  CAS  Google Scholar 

  5. Hu X, Pan J, Hu Y, Huo Y, Li G (2008) Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples. J Chromatogr A 1188:97–107

    Article  CAS  Google Scholar 

  6. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169–1190

    Article  CAS  Google Scholar 

  7. Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470

    Article  CAS  Google Scholar 

  8. Vinu A, Hossian KZ, Srinivasu P, Miyahara M, Anandan S, Gokulakrishnan N, Mori T, Ariga K, Balasubramanian VV (2007) Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. J Mater Chem 17:1819–1825

    Article  CAS  Google Scholar 

  9. Li Q, Jiang R, Dou Y, Wu Z, Huang T, Feng D, Yang J, Yu A, Zhao D (2011) Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49:1248–1257

    Article  CAS  Google Scholar 

  10. Lü JX, Liu JX, Wei Y, Jiang KL, Fan SS, Liu JY, Jiang GB (2007) Preparation of single-walled carbon nanotube fiber coating for solid-phase microextraction of organochlorine pesticides in lake water and wastewater. J Sep Sci 30:2138–2143

    Article  Google Scholar 

  11. Sarafraz-Yazdi A, Ghaemi F, Amiri A (2012) Comparative study of the Sol–gel based solid phase microextraction fibers in extraction of naphthalene, fluorene, anthracene and phenanthrene from saffron samples extractants. Microchim Acta 176:317–325

    Article  CAS  Google Scholar 

  12. Giardina M, Olesik SV (2001) Application of Low-temperature glassy carbon films in solid-phase microextraction. Anal Chem 73:5841–5851

    Article  CAS  Google Scholar 

  13. Chai XL, He Y, Jia JP (2007) Electrosorption-enhanced solid-phase microextraction using activated carbon fiber for determination of aniline in water. J Chromatogr A 1165:26–31

    Article  CAS  Google Scholar 

  14. Mehdinia A, Khani H, Mozaffari S (2012) Fibers coated with a graphene-polyaniline nanocomposite for the headspace solid-phase microextraction of organochlorine pesticides from seawater samples. Microchim Acta 181:89–95

    Article  Google Scholar 

  15. Xiao CH, Han SQ, Wang ZY, Xing J, Wu C (2001) Application of the polysilicone fullerene coating for solid-phase microextraction in the determination of semi-volatile compounds. J Chromatogr A 927:121–130

    Article  CAS  Google Scholar 

  16. Hu M, Reboul J, Furukawa S, Torad NL, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi YJ (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. Am Chem Soc 134:2864–2867

    Article  CAS  Google Scholar 

  17. Anbia M, Khazaei M (2011) Ordered nanoporous carbon-based SPME and determination by GC. Chromatographia 73:379–384

    Article  CAS  Google Scholar 

  18. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbons. Adv Mater 13:677–681

    Article  CAS  Google Scholar 

  19. Rahimi A, Hashemi P, Badiei A, Arab P, Ghiasvand AR (2011) CMK-3 nanoporous carbon as a new fiber coating for solid-phase microextraction coupled to gas chromatography–mass spectrometry. Anal Chim Acta 695:58–62

    Article  CAS  Google Scholar 

  20. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  21. Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  22. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191

    Article  CAS  Google Scholar 

  23. Comotti A, Bracco S, Sozzani P, Horike S, Matsuda R, Chen J, Takata M, Kubota Y, Kitagawa S (2008) Nanochannels of Two distinct cross-sections in a porous Al-based coordination polymer. J Am Chem Soc 130:13664–13672

    Article  CAS  Google Scholar 

  24. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  25. Srinivas G, Krungleviciute V, Guo ZX, Yildirim T (2014) Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ Sci 7:335–342

    Article  CAS  Google Scholar 

  26. Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Appl Catal A Gen 378:19–25

    Article  CAS  Google Scholar 

  27. Xi K, Cao S, Peng X, Ducati C, Kumar RV, Cheetham AK (2013) Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem Commun 49:2192–2194

    Article  CAS  Google Scholar 

  28. Hu M, Reboul J, Furukawa S, Torad NL, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134:2864–2867

    Article  CAS  Google Scholar 

  29. Radhakrishnan L, Reboul J, Furukawa S, Srinivasu P, Kitagawa S, Yamauchi Y (2011) Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol. Chem Mater 23:1225–1231

    Article  CAS  Google Scholar 

  30. Banerjee A, Gokhale R, Bhatnagar S, Jog J, Bhardwaj M, Lefez B, Hannoyer B, Ogale S (2012) MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J Mater Chem 22:19694–19699

    Article  CAS  Google Scholar 

  31. Qin FX, Jia SY, Liu Y, Han X, Ren HT, Zhang WW, Hou JW, Wu SH (2013) Metal-organic framework as a template for synthesis of magnetic CoFe2O4 nanocomposites for phenol degradation. Mater Lett 101:93–95

    Article  CAS  Google Scholar 

  32. Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki I, Loiseau FG, Senker J, Stock N (2009) [Al4(OH)2(OCH3)4(H2N-bdc)3]x H2O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew Chem Int Ed 121:5265–5268

    Article  Google Scholar 

  33. Wang X, Rao H, Lu X, Du X (2013) Application of sol–gel based octyl-functionalized mesoporous materials coated fiber for solid-phase microextraction. Talanta 105:204–210

    Article  CAS  Google Scholar 

  34. Doong RA, Chang SM, Sun YC (2000) Solid-phase microextraction for determining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 879:177–188

    Article  CAS  Google Scholar 

  35. Cortazar E, Zuloaga O, Sanz J, Raposo JC, Etxebarria N, Fernández LA (2002) MultiSimplex optimisation of the solid-phase microextraction–gas chromatographic mass spectrometric determination of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and phthalates from water samples. J Chromatogr A 978:165–175

    Article  CAS  Google Scholar 

  36. Aguinaga N, Campillo N, Vi~nas P, Hernández-Córdoba M (2007) Determination of 16 polycyclic aromatic hydrocarbons in milk and related products using solid-phase microextraction coupled to gas chromatography–mass spectrometry. Anal Chim Acta 290:285–290

    Article  Google Scholar 

  37. Fan J, Dong ZL, Qi ML, Fu RN, Qu LT (2013) Monolithic graphene fibers for solid-phase microextraction. J Chromatogr A1320:27–32

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (31171698, 31471643), the Innovation Research Group Program of Department of Education of Hebei for Hebei Provincial Universities (LJRC009) and the Natural Science Foundation of Hebei Province (B2012204028) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zang, X.H., Wang, J.T. et al. Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons from water and soil. Microchim Acta 182, 2353–2359 (2015). https://doi.org/10.1007/s00604-015-1566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1566-9

Keywords

Navigation