Skip to main content
Log in

A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes an electrochemical immunosensor for rapid determination of Salmonella pullorum and Salmonella gallinarum. The first step in the preparation of the immunosensor involves the electrodeposition of gold nanoparticles used for capturing antibody and enhancing signals. In order to generate a benign microenvironment for the antibody, the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate was used to modify the surface of a screen-printed carbon electrode (SPCE). The single steps of modification were monitored via cyclic voltammetry and electrochemical impedance spectroscopy. Based on these findings, a sandwich immunoassay was worked out for the two Salmonella species by immobilizing the respective unlabeled antibodies on the SPCE. Following exposure to the analytes, secondary antibody (labeled with HRP) is added to form the sandwich. After adding hydrogen peroxide and thionine, the latter is oxidized and its signal measured via CV. A linear response to the Salmonella species is obtained in the 104 to 109 cfu · mL−1 concentration range, and the detection limits are 3.0 × 103 cfu · mL−1 for both species (at an SNR of 3). This assay is sensitive, highly specific, acceptably accurate and reproducible. Given its low detection limit, it represents a promising tool for the detection of S. pullorum, S. gallinarum, and - conceivably - of other food-borne pathogens by exchanging the antibody.

We describe an electrochemical sandwich assay based on a screen-printed carbon electrode, gold nanoparticles and ILs and capable of detecting Salmonella pullorum and Salmonella gallinarum. The preparation is outlined in the Schematic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Photo 1
Scheme 1

Similar content being viewed by others

References

  1. Hong SS (2013) Therapeutic effects of bacteriophages against salmonella gallinarum infection in chickens. J Microbiol Biotechnol 23:1478–1483

    Article  CAS  Google Scholar 

  2. Barrow PA, Neto OCF (2011) Pullorum disease and fowl typhoid—new thoughts on old diseases: a review. Avian Pathol 40:1–13

    Article  CAS  Google Scholar 

  3. Batista DFA, De Freitas Neto OC, Lopes PD et al (2013) Polymerase chain reaction assay based on ratA gene allows differentiation between salmonella enterica subsp. Enterica serovar gallinarum biovars gallinarum and pullorum. J Vet Diagn Investig 25:259–262

    Article  Google Scholar 

  4. Van Immerseel F, Studholme DJ, Eeckhaut V et al (2013) Salmonella Gallinarum field isolates from laying hens are related to the vaccine strain SG9R. Vaccine 31:4940–4945

    Article  Google Scholar 

  5. Soria MC, Soria MA, Bueno DJ et al (2013) Comparison of 3 culture methods and PCR assays for salmonella gallinarum and salmonella pullorum detection in poultry feed. Poult Sci 92:1505–1515

    Article  CAS  Google Scholar 

  6. Roda A, Mirasoli M, Roda B et al (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28

    Article  CAS  Google Scholar 

  7. Baumler AJ, Tsolis RM, Ficht TA et al. (1998) Evolution of host adaptation in Salmonella enterica. Infect Immun 66

  8. Hu CM, Dou WC, Zhao GY (2014) Enzyme immunosensor based on gold nanoparticles electroposition and streptavidin-biotin system for detection of S. Pullorum & S. Gallinarum. Electrochim Acta 117:239–245

    Article  CAS  Google Scholar 

  9. Bäumler AJ, Hargis BM, Tsolis RM (2000) Tracing the origins of Salmonella outbreaks. Science 287:50–52

  10. Wang D, Dou WC, Zhao GY et al (2014) Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum. J Microbiol Methods 106:110–118

    Article  CAS  Google Scholar 

  11. Hu X, Dou WC, Fu LL et al (2013) A disposable immunosensor for Enterobacter sakazakii based on an electrochemically reduced graphene oxide-modified electrode. Anal Biochem 434:218–220

    Article  CAS  Google Scholar 

  12. Zhao GY, Zhan XJ, Dou WC (2011) A disposable immunosensor for Shigella flexneri based on multiwalled carbon nanotube/sodium alginate composite electrode. Anal Biochem 408:53–58

    Article  CAS  Google Scholar 

  13. Zhan XJ, Tang WL, Dou WC et al (2013) Dispoable immunosensor for Escherichia Coli O157:H7 based on a multi-walled carbon nanobon nanotube sodium alginate nanocomposite film modified screen-printed carbon electrode. Anal Lett 46:2690–2704

    Article  CAS  Google Scholar 

  14. Toh SY, Citartan M, Gopinath SC et al (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403

    Article  CAS  Google Scholar 

  15. Centi S, Messina G, Tombelli S et al (2008) Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosens Bioelectron 23:1602–1609

    Article  CAS  Google Scholar 

  16. Omidfar K, Zarei H, Gholizadeh F et al (2012) A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41-polyvinyl alcohol nanocomposite and colloidal gold nanoparticles. Anal Biochem 421:649–656

    Article  CAS  Google Scholar 

  17. Regiart M, Pereira SV, Spotorno VG et al (2013) Nanostructured voltammetric sensor for ultra-trace anabolic drug determination in food safety field. Sensors Actuators B Chem 188:1241–1249

    Article  CAS  Google Scholar 

  18. Wang XJ, Li XJ, Luo CN et al (2014) Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/beta-cyclodextrin/Au nanoparticles composites for chrysoidine analysis. Electrochim Acta 130:519–525

    Article  CAS  Google Scholar 

  19. Derkus B, Emregul E, Emregul KC et al (2014) Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing. Sensors Actuators B Chem 192:294–302

    Article  CAS  Google Scholar 

  20. Chen X, Qin P, Li J et al (2014) Impedance immunosensor for bovine interleukin-4 using an electrode modified with reduced graphene oxide and chitosan. Microchim Acta 182:369–376

    Article  Google Scholar 

  21. Li Y, Liu X, Zeng X et al (2009) Simultaneous determination of ultra-trace lead and cadmium at a hydroxyapatite-modified carbon ionic liquid electrode by square-wave stripping voltammetry. Sensors Actuators B Chem 139:604–610

    Article  CAS  Google Scholar 

  22. Attri P, Jha I, Choi EH et al (2014) Variation in the structural changes of myoglobin in the presence of several protic ionic liquid. Int J Biol Macromol 69:114–123

    Article  CAS  Google Scholar 

  23. Satoshi Shimano HZ, Itaru H (2007) Preparation of nanohybrid solid-state electrolytes with liquidlike mobilities by solidifying ionic liquids with silica particles. Am Chem Soc 19:6

    Google Scholar 

  24. Li R, Xia Q, Li Z et al (2013) Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Biosens Bioelectron 44:235–240

    Article  Google Scholar 

  25. Kumar A, Rani A, Venkatesu P et al (2014) Quantitative evaluation of the ability of ionic liquids to offset the cold-induced unfolding of proteins. Phys Chem Chem Phys: PCCP 16:15806–15810

    Article  CAS  Google Scholar 

  26. Du P, Liu S, Wu P et al (2007) Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim Acta 52:6534–6547

    Article  CAS  Google Scholar 

  27. Feng R, Zhang Y, Yu HQ et al (2013) Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranol detection. Biosens Bioelectron 42:367–372

    Article  CAS  Google Scholar 

  28. Fang Y-S, Chen S-Y, Huang X-J et al (2014) Simple approach for ultrasensitive electrochemical immunoassay of clostridium difficile toxin B detection. Biosens Bioelectron 53:238–244

    Article  CAS  Google Scholar 

  29. Guo AP, Li YY, Cao et al (2015) An electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 199 based on Au@CuxOS yolk-shell nanostructures with porous shells as labels. Biosens Bioelectron 63

  30. Fan HX, Zhang Y, Wu D et al (2013) Construction of label-free electrochemical immunosensor on mesoporous carbon nanospheres for breast cancer susceptibility gene. Anal Chim Acta 770:62–67

    Article  CAS  Google Scholar 

  31. Dong J, Zhao H, Xu M et al (2013) A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem 141:1980–1986

    Article  CAS  Google Scholar 

  32. Olsen EV, Pathirana ST, Samoylov AM et al (2003) Specific and selective biosensor for Salmonella and its detection in the environment. J Microbiol Meth 53:273–285

    Article  CAS  Google Scholar 

  33. Nguyen P-D, Tran TB, Nguyen DTX et al (2014) Magnetic silica nanotube-assisted impedimetric immunosensor for the separation and label-free detection of Salmonella typhimurium. Sensors Actuators B Chem 197:314–320

    Article  CAS  Google Scholar 

  34. Si SH, Lia X, Fung YS, Zhu DR (2001) Rapid detection of Salmonella enteritidis by piezoelectric immunosensor. Microchem J 68:7

    Google Scholar 

  35. Babacan PP S, Letcher S, Rand A (2002) Piezoelectric flow injection analysis biosensor for the detection of salmonella typhimurium. Instit Food Technol 67:13

    Google Scholar 

  36. Wong YY, Ng SP, Ng MH et al (2002) Immunosensor for the differentiation and detection of salmonella species based on a quartz crystal microbalance. Biosens Bioelectron 17:676–684

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Food Science and Engineering the most important discipline of Zhejiang province (JYTSP20141062). The Talent training provincial superior paper funded project (1110JY1412001P). Postgraduate Scientific and Technological Innovation Project of Zhejiang Gongshang University (3100XJ1514146) and Plans for college students in Zhejiang Province science and technology innovation activities (acrobatic tender grass talent programme) project (1110JQ4212048G). Project supported by the fund of the National Natural Science Fund (30571623). Analysis and testing projects of Zhejiang public innovation platform (2015C37023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenchao Dou or Guangying Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, J., Dou, W. & Zhao, G. A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles. Microchim Acta 182, 2267–2275 (2015). https://doi.org/10.1007/s00604-015-1573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1573-x

Keywords

Navigation