Skip to main content
Log in

Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the preparation of a cotton swab for use in surface enhanced Raman scattering (SERS) by assembling silver nanoparticles (Ag-NPs) on common cotton. The flexibility of such cotton swabs allows for a close contact with sample surfaces by swabbing. This can considerably improve the sample collection efficiency. These cotton swabs exhibit excellent SERS activity as shown by the detection of rhodamine 6G at 0.81 pM concentration. The reproducibility of the intensity of SERS peaks is within 10 %. The applicability is demonstrated by in-situ detection of the fungicide carbaryl on a cucumber with an irregular surface. This combination of superior SERS activity, high reproducibility, accessibility in irregularly-shaped matrices and low-cost production indicates that such swabs offer a large potential in analytical SERS.

A cost-effective surface enhanced Raman scattering (SERS) cotton swab is developed by assembling silver nanoparticles on common cotton. The SERS cotton swab can be used for in-situ sensitive detection of pesticide residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ge X, Asiri AM, Du D, Wen W, Wang S, Lin Y (2014) Nanomaterial-enhanced paper-based biosensors. TrAC Trends Anal Chem 58:31–39

    Article  CAS  Google Scholar 

  2. Alvarez-Puebla RA, Liz-Marzán LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem Int Ed 51:11214–11223

    Article  CAS  Google Scholar 

  3. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  4. Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc 128:2200–2201

    Article  CAS  Google Scholar 

  5. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37:898–911

    Article  CAS  Google Scholar 

  6. Betz JF, Wei WY, Cheng Y, White IM, Rubloff GW (2014) Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16:2224–2239

    Article  CAS  Google Scholar 

  7. Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Funct Mater 15:1197–1208

    Article  CAS  Google Scholar 

  8. Lin XM, Cui Y, Xu YH, Ren B, Tian ZQ (2009) Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394:1729–1745

    Article  CAS  Google Scholar 

  9. Abu Hatab NA, Oran JM, Sepaniak MJ (2008) Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2:377–385

    Article  CAS  Google Scholar 

  10. Zhang G, Wang D, Möhwald H (2007) Fabrication of multiplex quasi-three-dimensional grids of one-dimensional nanostructures via stepwise colloidal lithography. Nano Lett 7:3410–3413

    Article  CAS  Google Scholar 

  11. Semin DJ, Rowlen KL (1994) Influence of vapor deposition parameters on SERS active Ag film morphology and optical properties. Anal Chem 66:4324–4331

    Article  CAS  Google Scholar 

  12. Pan YC, Guo XY, Zhu JL, Wang X, Zhang H, Kang Y, Wu T, Du YP (2015) A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Microchim Acta 182:1775–1782

    Article  CAS  Google Scholar 

  13. Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2:3429–3435

    Article  CAS  Google Scholar 

  14. Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH (2014) Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem 86:6262–6267

    Article  CAS  Google Scholar 

  15. Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12:876–881

    Article  CAS  Google Scholar 

  16. Yu WW, White IM (2010) Inkjet Printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630

    Article  CAS  Google Scholar 

  17. Webb JA, Aufrecht J, Hungerford C, Bardhan R (2014) Ultrasensitive analyte detection with plasmonic paper dipsticks and swabs integrated with branched nanoantennas. J Mater Chem C 2:10446–10454

    Article  CAS  Google Scholar 

  18. He D, Hu B, Yao QF, Wang K, Yu SH (2009) Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3:3993–4002

    Article  CAS  Google Scholar 

  19. Liu S, Jiang C, Yang B, Zhang Z, Han M (2014) Controlled depositing of silver nanoparticles on flexible film and its application in ultrasensitive detection. RSC Adv 4:42358–42363

    Article  CAS  Google Scholar 

  20. Scholes FH, Davis TJ, Vernon KC, Lau D, Furman SA, Glenn AM (2012) A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface. J Raman Spectrosc 43:196–201

    Article  CAS  Google Scholar 

  21. Baraldi G, Lopez-Tobar E, Hara K, Sanchez-Cortes S, Gonzalo J (2014) Probing plasmonic effects on the Raman activity of Ag nanoparticle-based nanostructures through terphenyl diisocyanide adsorption. J Phys Chem C 118:4680–4686

    Article  CAS  Google Scholar 

  22. Shin K, Ryu K, Lee H, Kim K, Chung H, Sohn D (2013) Au nanoparticle-encapsulated hydrogel substrates for robust and reproducible SERS measurement. Analyst 138:932–938

    Article  CAS  Google Scholar 

  23. Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M (2014) Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces 6:21931–21937

    Article  CAS  Google Scholar 

  24. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  25. Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107:5723–5727

    Article  CAS  Google Scholar 

  26. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced raman spectroscopy. Chem Soc Rev 37:885–897

    Article  CAS  Google Scholar 

  27. Li X, Chen G, Yang L, Jin Z, Liu J (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater 20:2815–2824

    Article  CAS  Google Scholar 

  28. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932–9939

    Article  CAS  Google Scholar 

  29. Liu J, White I, DeVoe DL (2011) Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering. Anal Chem 83:2119–2124

    Article  CAS  Google Scholar 

  30. Fan Y, Lai K, Rasco BA, Huang Y (2015) Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis. LWT Food Sci Technol 60:352–357

    Article  CAS  Google Scholar 

  31. Li DW, Zhai WL, Li YT, Long YT (2014) Recent progress in surface enhanced raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181:23–43

    Article  CAS  Google Scholar 

  32. Lozowicka B, Kaczynski P, Paritova АЕ, Kuzembekova GB, Abzhalieva AB, Sarsembayeva NB, Alihan K (2014) Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food Chem Toxicol 64:238–248

    Article  CAS  Google Scholar 

  33. Wu L, Wang Z, Shen B (2013) Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl. Nanoscale 5:5274–5278

    Article  CAS  Google Scholar 

  34. Wang XT, Shi WS, She GW, Mu LX, Lee ST (2010) High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides. Appl Phys Lett 96:053104

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundations of China (21505057, 21375051), the Natural Science Foundation of Jiangsu Province (BK20150227), the Natural Science Foundation of Jiangsu Normal University (14XLR011), the Shanghai Key Laboratory of Functional Materials Chemistry (SKLFMC2014B01), and the Brand Major of Universities in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu-Lu Qu or Haitao Li.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic Supplementary Material

Supplementary data associated with this article can be found in the online version.

ESM 1

(DOCX 817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, LL., Geng, YY., Bao, ZN. et al. Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim Acta 183, 1307–1313 (2016). https://doi.org/10.1007/s00604-016-1760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1760-4

Keywords

Navigation