Skip to main content
Log in

A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The author describes the preparation of a magnetic metal organic framework of type MOF-199 containing magnetite (Fe3O4) nanoparticles carrying covalently immobilized 4-(thiazolylazo) resorcinol (Fe3O4@TAR). This material is shown to represent a viable sorbent for separation and preconcentration of Cd(II), Pb(II), and Ni(II) ions. Box-Behnken design was applied to optimize the parameters affecting preconcentration. Following elution with 0.6 mol L−1 EDTA, the ions were quantified by FAAS. The capacity of the sorbent ranged between 185 and 210 mg g−1. The limits of detection are 0.15, 0.40, and 0.8 ng mL−1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <8.5 %. The method was successfully applied to the rapid extraction of trace amounts of these ions from sea food and agri food.

(a) A schematic diagram of Fe3O4 functionalization by TAR (4-(thiazolylazo) resorcinol). (b) The schematic illustration of the magnetic metal organic framework-TAR nanocomposite.

H3BTC: benzene-1,3,5-tricarboxylic acid; TEA: triethylamine; 3-CPS: 3-chloropropyl triethoxysilane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang CY, Yan ZG, Zhou YY, Wang L, Xie YB, Bai LP, Zhou HY, Li FS (2015) Embedment of Ag (I)-organic frameworks into silica gels for microextraction of polybrominated diphenyl ethers in soils. J Chromatogr A 1383:18–24

    Article  CAS  Google Scholar 

  2. Wang Y, Chen H, Tang J, Ye G, Ge H, Hu X (2015) Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem 181:191–197

    Article  CAS  Google Scholar 

  3. Zhou Q, Zhu L, Xia X, Tang H (2016) The water-resistant zeolite imidazolate framework 67 is a viable solid phase sorbent for fluoroquinolones while efficiently excluding macromolecules. Microchim Acta DOI. doi:10.1007/s00604-016-1814-7

    Google Scholar 

  4. Liu X, Wang C, Wang Z, Wu Q, Wang Z (2015) Nanoporous carbon derived from a metal organic framework as a new kind of adsorbent for dispersive solid phase extraction of benzoylurea insecticides. Microchim Acta 182:1903–1910

    Article  CAS  Google Scholar 

  5. Xu Y, Jin J, Li X, Han Y, Meng H, Song C, Zhang X (2015) Magnetization of a Cu (II)-1, 3, 5-benzenetricarboxylate metal-organic framework for efficient solid-phase extraction of Congo red. Microchim Acta 182:2313–2320

    Article  CAS  Google Scholar 

  6. Zhang X, Zang XH, Wang JT, Wang C, Wu QH, Wang Z (2015) Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons from water and soil. Microchim Acta 182:2353–2359

    Article  CAS  Google Scholar 

  7. Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R, Babazadeh M, Abolhasani J, Hassanpour A (2015) Synthesis and application of a novel magnetic metal-organic framework nanocomposite for determination of Cd, Pb, and Zn in baby food samples. Can J Chem 93:518–525

    Article  CAS  Google Scholar 

  8. Ke F, Qiu L-G, Yuan Y-P, Peng F-M, Jiang X, Xie A-J, Shen Y-H, Zhu J-F (2011) Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J Hazard Mater 196:36–43

    Article  CAS  Google Scholar 

  9. Bagheri H, Afkhami A, Saber-Tehrani M, Khoshsafar H (2012) Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta 97:87–95

    Article  CAS  Google Scholar 

  10. Hamilton JW, Kaltreider RC, Bajenova OV, Ihnat MA, McCaffrey J, Turpie BW, Rowell EE, Oh J, Nemeth MJ, Pesce CA, Lariviere JP (1998) Molecular basis for effects of carcinogenic heavy metals on inducible gene expression. Environ Health Persp 106:1005–1015

    Article  CAS  Google Scholar 

  11. Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41:91–128

    Article  CAS  Google Scholar 

  12. Partanen T, Heikkilä P, Hernberg S, Kauppinen T, Moneta G, Ojajärvi A (1991) Renal cell cancer and occupational exposure to chemical agents. Scand J Work Environ Health 1:231–239

    Article  Google Scholar 

  13. Bruno P, Caselli M, De Gennaro G, Ielpo P, Ladisa T, Placentino CM (2006) Ion chromatography determination of heavy metals in airborne particulate with preconcentration and large volume direct injection. Chromatographia 64:537–542

    Article  CAS  Google Scholar 

  14. Abe S, Fuji K, Sono T (1994) Liquid-liquid extraction of manganese(II), copper(II) and zinc(II) with acyclic and macrocyclic Schiff bases containing bisphenol a subunits. Anal Chim Acta 293:325–330

    Article  CAS  Google Scholar 

  15. Afkhami A, Bahram M (2006) Cloud point extraction simultaneous spectrophotometric determination of Zn(II), Co(II) and Ni(II) in water and urine samples by 1-(2-pyridylazo) 2-naphthol using partial least squares regression. Microchim Acta 155:403–408

    Article  CAS  Google Scholar 

  16. Yebra-Biurrun MC, Bermejo-Barrera A, Bermejo-Barrera MP, Barciela-Alonso MC (1995) Atomic absorption spectrometry determination of trace metals in natural waters by flame atomic absorption spectrometry following on-line ion-exchange preconcentration. Anal Chim Acta 303:341–345

    Article  CAS  Google Scholar 

  17. Afkhami A, Saber-Tehrani M, Bagheri H, Madrakian T (2011) Flame atomic absorption spectrometric determination of trace amounts of Pb(II) and Cr(III) in biological, food and environmental samples after preconcentration by modified nano-alumina. Microchim Acta 172:125–136

    Article  CAS  Google Scholar 

  18. Faraji M, Yamini Y, Saleh A, Rezaee M, Ghambarian M, Hassani R (2010) A nanoparticle based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal Chim Acta 659:172–177

    Article  CAS  Google Scholar 

  19. Bagheri H, Asgharinezhad AA, Ebrahimzadeh H (2015) Determination of trace amounts of Cd(II), Cu(II), and Ni(II) in food samples using a novel functionalized magnetic nanosorbent. Food Analytical Methods:1–13

  20. Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169:466–471

    Article  CAS  Google Scholar 

  21. Tuzen M, Soylak M, Elci L (2005) Multi-element pre-concentration of heavy metal ions by solid phase extraction on Chromosorb 108. Anal Chim Acta 548:101–108

    Article  CAS  Google Scholar 

  22. Bagtash M, Yamini Y, Tahmasebi E, Zolgharnein J, Dalirnasab Z (2016) Magnetite nanoparticles coated with tannic acid as a viable sorbent for solid-phase extraction of Cd2+, Co2+ and Cr3+. Microchim Acta 183:449–456

    Article  CAS  Google Scholar 

  23. Tuzen M, Saygi KO, Soylak M (2008) Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination. J Hazard Mater 156:591–595

    Article  CAS  Google Scholar 

  24. Taghizadeh M, Asgharinezhad AA, Samkhaniany N, Tadjarodi A, Abbaszadeh A (2014) Pooladi M. Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology Microchim Acta 181:597–605

    CAS  Google Scholar 

  25. Soylak M, Ercan O (2009) Selective separation and preconcentration of copper (II) in environmental samples by the solid phase extraction on multi-walled carbon nanotubes. J Hazard Mater 168:1527–1531

    Article  CAS  Google Scholar 

  26. Ghaedi M, Ahmadi F, Tavakoli Z, Montazerozohori M, Khanmohammadi A, Soylak M (2008) Three modified activated carbons by different ligands for the solid phase extraction of copper and lead. J Hazard Mater 152:1248–1255

    Article  CAS  Google Scholar 

  27. Asgharinezhad AA, Ebrahimzadeh H, Rezvani M, Shekari N, Loni M (2014) A novel 4-(2-pyridylazo) resorcinol functionalized magnetic nanosorbent for selective extraction of Cu(II) and Pb(II) ions from food and water samples. Food Addit Contam: Part A 31:1196–1204

    CAS  Google Scholar 

  28. Adlnasab L, Ebrahimzadeh H, Asgharinezhad AA, Aghdam MN, Dehghani A, Esmaeilpour S (2014) A preconcentration procedure for determination of ultra-trace mercury(II) in environmental samples employing continuous-flow cold vapor atomic absorption spectrometry. Food Anal Methods 7:616–628

    Article  Google Scholar 

  29. Sohrabi MR, Matbouie Z, Asgharinezhad AA, Dehghani A (2013) Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim Acta 180:589–597

    Article  CAS  Google Scholar 

  30. Taghizadeh M, Asgharinezhad AA, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A (2013) A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology. Microchim Acta 180:1073–1084

    Article  CAS  Google Scholar 

  31. Ebrahimzadeh H, Asgharinezhad AA, Tavassoli N, Sadeghi O, Amini MM, Kamarei F (2012) Separation and spectrophotometric determination of very low levels of Cr (VI) in water samples by novel pyridine-functionalized mesoporous silica. Int J Environ Anal Chem 92:509–521

    Article  CAS  Google Scholar 

  32. Tadjarodi A, Abbaszadeh A (2016) A magnetic nanocomposite prepared from chelator-modified magnetite (Fe3O4) and HKUST-1 (MOF-199) for separation and preconcentration of mercury (II). Microchim Acta DOI. doi:10.1007/s00604-016-1770-2

    Google Scholar 

  33. Zhang S, Jiao Z, Yao W (2014) A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A 1371:74–81

    Article  CAS  Google Scholar 

  34. Samadi A, Amjadi M (2015) Magnetic Fe3O4@C nanoparticles modified with 1-(2-thiazolylazo)-2-naphthol as a novel solid-phase extraction sorbent for preconcentration of copper(II). Microchim Acta 182:257–264

    Article  CAS  Google Scholar 

  35. Yilmaz AB (2003) Levels of heavy metals (Fe, Cu, Ni, Cr, Pb, and Zn) in tissue of Mugil cephalus and Trachurus mediterraneus from Iskenderun Bay, Turkey. Environ Res 92:277–281

    Article  CAS  Google Scholar 

  36. Asgharinezhad AA, Mollazadeh N, Ebrahimzadeh H, Mirbabaei F, Shekari N (2014) Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water. J Chromatogr A 1338:1–8

    Article  CAS  Google Scholar 

  37. Asgharinezhad AA, Ebrahimzadeh H, Mirbabaei F, Mollazadeh N, Shekari N (2014) Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. Anal Chim Acta 844:80–89

    Article  CAS  Google Scholar 

  38. Hartmann M, Kunz S, Himsl D, Tangermann O, Ernst S, Wagener A (2008) Adsorptive separation of isobutene and Isobutane on Cu3(BTC)2. Langmuir 24:8634–8642

    Article  CAS  Google Scholar 

  39. Asgharinezhad AA, Ebrahimzadeh H (2016) A simple and fast method based on mixed hemimicelles coated magnetite nanoparticles for simultaneous extraction of acidic and basic pollutants. Anal Bioanal Chem 408:473–486

    Article  CAS  Google Scholar 

  40. Asgharinezhad AA, Ebrahimzadeh H (2015) Coextraction of acidic, basic and amphiprotic pollutants using multiwalled carbon nanotubes/magnetite nanoparticles@ polypyrrole composite. J Chromatogr A 1412:1–11

    Article  CAS  Google Scholar 

  41. StatGraphics Plus 5.1 for Windows, Statistical Graphic Crop., online manuals, 2001.

  42. Amjadi M, Samadi A, Manzoori JL (2015) A composite prepared from halloysite nanotubes and magnetite (Fe3O4) as a new magnetic sorbent for the preconcentration of cadmium (II) prior to its determination by flame atomic absorption spectrometry. Microchim Acta 182:1627–1633

    Article  CAS  Google Scholar 

  43. Zawisza B, Baranik A, Malicka E, Talik E, Sitko R (2016) Preconcentration of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) with ethylenediamine-modified graphene oxide. Microchim Acta 183:231–240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Tabriz Branch, Islamic Azad University, Iran, for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghorbani-Kalhor.

Ethics declarations

The author declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani-Kalhor, E. A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II). Microchim Acta 183, 2639–2647 (2016). https://doi.org/10.1007/s00604-016-1896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1896-2

Keywords

Navigation