Skip to main content
Log in

Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrochemical DNA sensors represent a simple, accurate and economical platform for DNA detection. Gold nanoparticles are known to be efficient labels in electrochemical sensors and to be viable materials to modify the surface of electrodes thereby to enhance the detection limit of the sensor. For surface modification, gold nanoparticles are used in combination with nanomaterials like graphene, graphene oxide, or carbon nanotubes to improve electrochemical performance in general. This review (with 116 refs.) mainly covers the advances made in recent years in the use of gold nanoparticles in DNA sensing. It is divided into the following main sections: (a) An introduction covers aspects of electrochemical sensing of DNA and of appropriate nanomaterials in general. (b) The use of gold nanoparticles in DNA is specifically addressed next, with subsections on AuNPs acting as electrochemical labels, electron transfer mediators, signal amplifiers, carriers of electroactive molecules, catalysts, immobilization platforms, on silver enhancement strategies, on AuNPs modified with carbonaceous materials (such as graphenes and nanotubes), and on multiple amplification schemes. The review concludes with a discussion of current challenges and trends in terms of highly sensitive DNA based sensing using AuNPs.

The review describes the state of the art in the use of gold nanoparticles in the electrochemical DNA sensors and contains sections on the use of AuNPs as labels, signal amplifiers, carriers of electroactive molecules, catalyst, immobilization platform, and on silver enhancement and multiple amplification strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. He P, Xu Y, Fang Y (2005) A review: electrochemical DNA Biosensorsfor sequence recognition. Anal Lett 38(15):2597–2623

    Article  CAS  Google Scholar 

  2. Paleček E, Jelen F (2002) Electrochemistry of nucleic acids and development of DNASensors. Crit Rev Anal Chem 32(3):261–270

    Article  Google Scholar 

  3. Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M (2008) Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal Chim Acta 609(2):139–159

    Article  CAS  Google Scholar 

  4. Fojta M (2002) Electrochemical sensors for DNA interactions and damage. Electroanal 14(21):1449–1463

    Article  CAS  Google Scholar 

  5. Diculescu VC, Paquim AC, Brett AMO (2005) Electrochemical DNA sensors for detection of DNA damage. Sensors 5(6):377–393

    Article  CAS  Google Scholar 

  6. Liu G, Wan Y, Gau V, Zhang J, Wang L, Song S, Fan C (2008) An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. J Am Chem Soc 130(21):6820–6825

    Article  CAS  Google Scholar 

  7. Grabowska I, Singleton DG, Stachyra A, Gòra-Sochacka A, Sirko A, Zagòrski-Ostoja W, Radecka H, Stulz E, Radecki J (2014) A highly sensitive electrochemical genosensor based on Co-porphyrin-labelled DNA. Chem Commun 50(32):4196–4199

    Article  CAS  Google Scholar 

  8. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199

    Article  CAS  Google Scholar 

  9. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892

    Article  CAS  Google Scholar 

  10. Hu Q, Hu W, Kong J, Zhang X (2015) PNA-based DNA assay with attomolar detection limit based on polygalacturonic acid mediated in-situ deposition of metallic silver on a gold electrode. Microchim Acta 182(1–2):427–434

    Article  CAS  Google Scholar 

  11. Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32(11):2930–2937

    Article  CAS  Google Scholar 

  12. Jayakumar K, Rajesh R, Dharuman V, Venkatasan R, Hahn JH, Pandian SK (2012) Gold nanoparticle decorated graphene core first generation PAMAM dendrimers for label free electrochemical DNA hybridization sensing. Biosens Bioelectron 31(1):406–412

    Article  CAS  Google Scholar 

  13. Li C, Karadeniz H, Canavar E, Erdem A (2012) Electrochemical sensing of label free DNA hybridization related to breast cancer 1 gene at disposable sensor platforms modified with single walled carbon nanotubes. Electrochim Acta 82:137–142

    Article  CAS  Google Scholar 

  14. García-Mendiola T, Gamero M, Campuzano S, Revenga-Parra M, Alonso C, Pedrero M, Pariente F, Pingarrón JM, Lorenzo E (2013) Nanostructured rough gold electrodes as platforms to enhance the sensitivity of electrochemical genosensors. Anal Chim Acta 788:141–147

    Article  CAS  Google Scholar 

  15. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249

    Article  CAS  Google Scholar 

  16. Kurkina T, Vlandas A, Ahmad A, Kern K, Balasubramanian K (2011) Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew Chem Int Ed 50(16):3710–3714

    Article  CAS  Google Scholar 

  17. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47(40):7602–7625

    Article  CAS  Google Scholar 

  18. Liu HY, Johnston APR (2013) A programmable sensor to probe the internalization of proteins and nanoparticles in live cells. Angew Chem Int Ed 52(22):5744–5748

    Article  CAS  Google Scholar 

  19. Wu L, Xiong E, Zhang X, Zhang X, Chen J (2014) Nanomaterials as signal amplification elements in DNA-based electrochemical sensing. Nano Today 9(2):197–211

    Article  CAS  Google Scholar 

  20. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426

    Article  CAS  Google Scholar 

  21. Kerman K, Saito M, Yamamura S, Takamura Y, Tamiya E (2008) Nanomaterial-based electrochemical biosensors for medical applications. TRAC Trend Anal Chem 27(7):585–592

    Article  CAS  Google Scholar 

  22. Holzinger M, Goff AL, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63

    Article  CAS  Google Scholar 

  23. Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417(1):1–16

    Article  CAS  Google Scholar 

  24. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  Google Scholar 

  25. Ensafi AA, Taei M, Rahmani HR, Khayamian T (2011) Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode. Electrochim Acta 56(24):8176–8183

    Article  CAS  Google Scholar 

  26. Oh JH, Lee JS (2011) Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a single-base mutation in the breast cancer gene BRCA1. Anal Chem 83(19):7364–7370

    Article  CAS  Google Scholar 

  27. Shi A, Wang J, Han X, Fang X, Zhang Y (2014) A sensitive electrochemical DNA biosensor based on gold nanomaterial and graphene amplified signal. Sensor Actuat B-Chem 200:206–212

    Article  CAS  Google Scholar 

  28. Radhakrishnan S, Sumathi C, Dharuman V, Wilson J (2012) Gold nanoparticles functionalized poly(3,4-ethylenedioxythiophene) thin film for highly sensitive label free DNA detection. Anal Methods 5(3):684–689

    Article  Google Scholar 

  29. Zhang Y, Huang L (2012) Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine and graphene. Microchim Acta 176(3–4):463–470

    Article  CAS  Google Scholar 

  30. Castaneda MT, Alegret S, Merkoai A (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanal 19(7):743–753

    Article  CAS  Google Scholar 

  31. Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43(1):29–41

    Article  Google Scholar 

  32. Pingarrón JM, Yañez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53(19):5848–5866

    Article  CAS  Google Scholar 

  33. Hutter E, Maysinger D (2013) Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci 34(9):497–507

    Article  CAS  Google Scholar 

  34. Lepoitevin M, Lemouel M, Bechelany M, Janot JM, Balme S (2015) Gold nanoparticles for the bare-eye based and spectrophotometric detection of proteins, polynucleotides and DNA. Microchim Acta 182(5–6):1223–1229

    Article  CAS  Google Scholar 

  35. Jang H, Kwak CH, Kim G, Kim SM, Huh YS, Jeon TJ (2016) Identification of genetically modified DNA found in roundup ready soybean using gold nanoparticles. Microchim Acta 183(9):2649–2654

    Article  CAS  Google Scholar 

  36. Lu L, Wu J, Li M, Kang T, Cheng S (2015) Detection of DNA damage by exploiting the distance dependence of the electrochemiluminescence energy transfer between quantum dots and gold nanoparticles. Microchim Acta 182(1–2):233–239

    Article  CAS  Google Scholar 

  37. Azizah N, Hashim U, Gopinath SC, Nadzirah S (2016) Gold nanoparticle mediated method for spatially resolved deposition of DNA on nano-gapped interdigitated electrodes, and its application to the detection of the human papillomavirus. Microchim Acta 183(12):3119–3126

    Article  CAS  Google Scholar 

  38. Niemeyer CM, Simon U (2005) DNA-based assembly of metal nanoparticles. Eur J Inorg Chem 2005(18):3641–3655

    Article  CAS  Google Scholar 

  39. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Article  CAS  Google Scholar 

  40. Tan LH, Xing H, Chen H, Lu Y (2013) Facile and efficient preparation of anisotropic DNA functionalized gold nanoparticles and their regioselective assembly. J Am Chem Soc 135(47):17675–17678

    Article  CAS  Google Scholar 

  41. Fratila RM, Mitchell SG, Pino PD, Grazu V, de la Fuente JM (2014) Strategies for the biofunctionalization of gold and iron oxide nanoparticles. Langmuir 30(50):15057–15071

    Article  CAS  Google Scholar 

  42. Wang H, Wang D, Peng Z, Tang W, Li N, Liu F (2013) Assembly of DNA-functionalized gold nanoparticles on electrospun nanofibers as a fluorescent sensor for nucleic acids. Chem Commun 49(49):5568–5570

    Article  CAS  Google Scholar 

  43. Xu M, Zhuang J, Chen X, Chen G, Tang D (2013) A difunctional DNA-AuNP dendrimer coupling DNAzyme with intercalators for femtomolar detection of nucleic acids. Chem Commun 49(66):7304–7306

    Article  CAS  Google Scholar 

  44. Wang Z, Zhang J, Zhu C, Wu S, Mandler D, Marks RS, Zhang H (2014) Amplified detection of femtomolar DNA based on a one-to-few recognition reaction between DNA-Au conjugate and target DNA. Nanoscale 6(6):3110–3115

    Article  CAS  Google Scholar 

  45. Fei W, Zhang Y, Sun X, Zhang Y, Cao H, Shen H, Jia N (2012) Direct electrochemistry and electrocatalysis of myoglobin immobilized on DNA-gold nanoparticle clusters composite film. J Electroanal Chem 675:5–10

    Article  CAS  Google Scholar 

  46. Yang Y, Li C, Yin L, Liu M, Wang Z, Shu Y, Li G (2014) Enhanced charge transfer by gold nanoparticle at DNA modified electrode and its application to label-free DNA detection. ACS Appl Mater Interfaces 6(10):7579–7584

    Article  CAS  Google Scholar 

  47. Gao Q, Zhang W, Guo Y, Qi H, Zhang C (2013) Highly sensitive impedimetric sensing of DNA hybridization based on the target DNA-induced displacement of gold nanoparticles attached to ssDNA probe. Electrochem Commun 13(4):335–337

    Article  CAS  Google Scholar 

  48. Wang C, Yuan X, Liu X, Gao Q, Qi H, Zhang C (2013) Signal-on impedimetric electrochemical DNA sensor using dithiothreitol modified gold nanoparticle tag for highly sensitive DNA detection. Anal Chim Acta 799:36–43

    Article  CAS  Google Scholar 

  49. Li Z, Miao X, Xing K, Zhu A, Ling L (2015) Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles. Biosens Bioelectron 74:687–690

    Article  CAS  Google Scholar 

  50. Rasheed PA, Sandhyarani N (2014) Femtomolar level detection of BRCA1 gene using gold nanoparticle labeled sandwich type DNA sensor. Colloids Surf B: Biointerfaces 117:7–13

    Article  CAS  Google Scholar 

  51. Rasheed PA, Sandhyarani N (2015) Attomolar detection of BRCA1 gene based on gold nanoparticle assisted signal amplification. Biosens Bioelectron 65:333–340

    Article  CAS  Google Scholar 

  52. Mathew M, Sandhyarani N (2014) Distance dependent sensing capabilities of enzymatic biosensor surface constructed with gold nanoparticle immobilized on self assembled monolayer modified gold electrode. Sens Lett 12(8):1286–1294

    Article  Google Scholar 

  53. Wang W, Yuan X, Liu X, Gao Q, Qi H, Zhang C (2013) Selective DNA detection at zeptomole level based on coulometric measurement of gold nanoparticle-mediated electron transfer across a self-assembled monolayer. SCIENCE CHINA Chem 56(7):1009–1016

    Article  CAS  Google Scholar 

  54. Li S, Qiu W, Zhang X, Ni J, Gao F, Wang Q (2016) A high-performance DNA biosensor based on the assembly of gold nanoparticles on the terminal of hairpin-structured probe DNA. Sensor Actuat B-Chem 223:861–867

    Article  CAS  Google Scholar 

  55. Liu G, Lin Y (2007) Electrochemical quantification of single-mucleotide polymorphisms using nanoparticle probes. J Am Chem Soc 129(34):10394–10401

    Article  CAS  Google Scholar 

  56. Sun AL, Zhang YF, Wang XN (2015) Sensitive voltammetric determination of DNA via a target-induced strand-displacement reaction using quantum dot-labeled probe DNA. Microchim Acta 182(7–8):1403–1410

    Article  CAS  Google Scholar 

  57. March G, Nguyen TD, Piro B (2015) Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5(2):241–275

    Article  CAS  Google Scholar 

  58. Kuan GC, Sheng LP, Rijiravanich P, Marimuthu K, Ravichandran M, Yin LS, Lertanantawong B, Surareungchai W (2013) Gold-nanoparticle based electrochemical DNA sensor for the detection of fish pathogen Aphanomyces invadans. Talanta 117:312–317

    Article  CAS  Google Scholar 

  59. Rasheed PA, Sandhyarani N (2014) Graphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene. Sensor Actuat B-Chem 204:777–782

    Article  CAS  Google Scholar 

  60. Rasheed PA, Sandhyarani N (2015) A highly sensitive DNA sensor for attomolar detection of BRCA1 gene: signal amplification with gold nanoparticle cluster. Analyst 140:2713–2718

    Article  CAS  Google Scholar 

  61. Rasheed PA, Radhakrishnan T, Shihabudeen PK, Sandhyrani N (2016) Reduced graphene oxide-yttria nanocomposite modified electrode for enhancing the sensitivity of electrochemical genosensors. Biosens Bioelectron 83:361–367

    Article  CAS  Google Scholar 

  62. Zheng J, Chen C, Wang X, Zhang F, He P (2014) A sequence-specific DNA sensor for hepatitis B virus diagnostics based on the host-guest recognition. Sensor Actuat B-Chem 199:168–174

    Article  CAS  Google Scholar 

  63. Pumera M, Castañeda MT, Pividori MI, Eritja R, Merkoçi A, Alegret S (2005) Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. Langmuir 21(21):9625–9629

    Article  CAS  Google Scholar 

  64. Kawde AN, Wang J (2004) Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanal 16(1–2):101–107

    Article  CAS  Google Scholar 

  65. Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128(26):8575–8580

    Article  CAS  Google Scholar 

  66. Fang X, Jiang W, Han X, Zhang Y (2013) Molecular beacon based biosensor for the sequence-specific detection of DNA using DNA-capped gold nanoparticles-streptavidin conjugates for signal amplification. Microchim Acta 180(13–14):1271–1277

    Article  CAS  Google Scholar 

  67. Bonanni A, Esplandiu MJ, del Valle M (2008) Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles. Electrochim Acta 53(11):4022–4029

    Article  CAS  Google Scholar 

  68. Fang X, Bai L, Han X, Wang J, Shi A, Zhang Y (2014) Ultra-sensitive biosensor for K-ras gene detection using enzyme capped gold nanoparticles conjugates for signal amplification. Anal Biochem 460:47–53

    Article  CAS  Google Scholar 

  69. Cao X (2014) Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim Acta 181(9–10):1133–1141

    Article  CAS  Google Scholar 

  70. Cui HF, Xu TB, Sun YL, Zhou AW, Cui YH, Liu W, Luong JHT (2015) Hairpin DNA as a biobarcode modified on gold nanoparticles for electrochemical DNA detection. Anal Chem 87:1358–1365

    Article  CAS  Google Scholar 

  71. Mucic RC, Herrlein MK, Mirkin CA, Letsinger RL (1996) Synthesis and characterization of DNA with ferrocenyl groups attached to their 5′-termini: electrochemical characterization of a redox-active nucleotide monolayer. Chem Commun 1(4):555–557

    Article  Google Scholar 

  72. Wang J, Polsky R, Merkoci A, Turner KL (2003) Electroactive beads for ultrasensitive DNA detection. Langmuir 19(4):989–991

    Article  CAS  Google Scholar 

  73. Patolsky F, Weizmann Y, Willner I (2002) Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. J Am Chem Soc 124(5):770–772

    Article  CAS  Google Scholar 

  74. Wang JL, Munir A, Li ZH, Zhou HS (2010) Aptamer-AuNPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Talanta 81:63–67

    Article  CAS  Google Scholar 

  75. Rohs R, Sklenar H, Lavery R, Röder B (2000) Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J Am Chem Soc 122(12):2860–2866

    Article  CAS  Google Scholar 

  76. Zhu LM, Luo LQ, Wang ZX (2012) DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens Bioelectron 35:507–511

    Article  CAS  Google Scholar 

  77. Dohno C, Stemp EDA, Barton JK (2003) Fast back electron transfer prevents guanine damage by photoexcited thionine bound to DNA. J Am Chem Soc 125:9586–9587

    Article  CAS  Google Scholar 

  78. Liu SN, Wu P, Li W, Zhang H, Cai CX (2011) Ultrasensitive and selective electrochemical identification of hepatitis C virus genotype 1b based on specific endonuclease combined with gold nanoparticles signal amplification. Anal Chem 83:4752–4758

    Article  CAS  Google Scholar 

  79. Zhang XA, Teng YQ, Fu Y, Xu LL, Zhang SP, He B, Wang CG, Zhang W (2010) Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Anal Chem 82:9455–9460

    Article  CAS  Google Scholar 

  80. Wang J, Li J, Baca AJ, Hu J, Zhou F, Yan W, Pang D (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75(15):3941–3945

    Article  CAS  Google Scholar 

  81. Baca AJ, Zhou F, Wang J, Hu J, Li J, Wang J, Chikneyan ZS (2004) Attachment of ferrocene-capped gold nanoparticle/streptavidin conjugates onto electrode surfaces covered with biotinylated biomolecules for enhanced voltammetric analysis. Electroanal 16(12):73–80

    Article  CAS  Google Scholar 

  82. Qiu L, Qiu L, Wu ZS, Shen G, Yu RQ (2013) Cooperative amplification-based electrochemical sensor for the zeptomole detection of nucleic acids. Anal Chem 85(17):8225–8231

    Article  CAS  Google Scholar 

  83. Qiu L, Qiu L, Zhou H, Wu Z, Shen G, Yu R (2014) Sensitive and selective electrochemical DNA sensor for the analysis of cancer-related single nucleotide polymorphism. New J Chem 38(10):4711–4715

    Article  CAS  Google Scholar 

  84. Cui H, Cheng L, Zhang J, Liu R, Zhang C, Fan H (2014) An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution. Biosens Bioelectron 56:124–128

    Article  CAS  Google Scholar 

  85. Kong RM, Song ZL, Meng HM, Zhang XB, Shen GL, Yu RQ (2014) A label-free electrochemical biosensor for highly sensitive and selective detection of DNA via a dual-amplified strategy. Biosens Bioelectron 54:442–447

    Article  CAS  Google Scholar 

  86. Wang W, Song L, Gao Q, Qi H, Zhang C (2013) Highly sensitive detection of DNA using an electrochemical DNA sensor with thionine-capped DNA/gold nanoparticle conjugates as signal tags. Electrochem Commun 34:18–21

    Article  CAS  Google Scholar 

  87. Liu X, Zhang R, Liu L, Zhou Y, Gao Q (2014) Highly sensitive voltammetric detection of DNA hybridization in sandwich format using thionine-capped gold nanoparticle/reporter DNA conjugates as signal tags. Gold Bull 47(1):119–125

    Article  CAS  Google Scholar 

  88. Das J, Aziz MA, Yang H (2006) A nanocatalyst based assay for proteins: DNA free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold nanoparticle labels. J Am Chem Soc 128:16022–16023

    Article  CAS  Google Scholar 

  89. Liu J, Tian M, Liang Z (2013) DNA analysis based on the electrocatalytic amplification of gold nanoparticles. Electrochim Acta 113:186–193

    Article  CAS  Google Scholar 

  90. Lin L, Liu Y, Tang L, Li J (2011) Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 136(22):4732–4737

    Article  CAS  Google Scholar 

  91. Gao F, Zhu Z, Lei J, Geng Y, Ju X (2013) Sub-femtomolar electrochemical detection of DNA using surface circular strand-replacement polymerization and gold nanoparticle catalyzed silver deposition for signal amplification. Biosens Bioelectron 39:199–203

    Article  CAS  Google Scholar 

  92. Ye WW, Shi JY, Chan CY, Zhang Y, Yang M (2014) A nanoporous membrane based impedance sensing platform for DNA sensing with gold nanoparticle amplification. Sensor Actuat B-Chem 193:877–882

    Article  CAS  Google Scholar 

  93. Zhang Q, Dai P, Yang Z (2011) Sensitive DNA-hybridization biosensors based on gold nanoparticles for testing DNA damage by Cd(II) ions. Microchim Acta 173:347–352

    Article  CAS  Google Scholar 

  94. Yin ZJ, Wu JJ, Yang ZS (2010) A sensitive mercury (II) sensor based on CuO nanoshuttles/poly(thionine) modified glassy carbon electrode. Microchim Acta 170:307–312

    Article  CAS  Google Scholar 

  95. Zhao K, Song HY, Zhuang SQ, Dai LM, He PG, Fang YZ (2007) Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochem Commun 9:65–70

    Article  CAS  Google Scholar 

  96. Gao Q, Cui XQ, Yang F, Ma Y, Yang XR (2003) Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosens Bioelectron 19:277–282

    Article  CAS  Google Scholar 

  97. Owino JHO, Arotiba OA, Hendricks N, Songa EA, Jahed N, Waryo TT, Ngece RF, Baker PGL, Iwuoha EI (2008) Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors 8:8262–8274

    Article  CAS  Google Scholar 

  98. Wang L, Hua E, Liang M, Ma C, Liu Z, Sheng S, Liu M, Xie G, Feng W (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207

    Article  CAS  Google Scholar 

  99. Huang H, Bai W, Dong C, Guo R, Liu Z (2015) An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papilloma virus DNA detection. Biosens Bioelectron 68:442–446

    Article  CAS  Google Scholar 

  100. Xu CX, Zhai QG, Liu YJ, Huang KJ, Lu L, Li KX (2014) A novel electrochemical DNA biosensor construction based on layered CuS-graphene composite and Au nanoparticles. Anal Bioanal Chem 406(27):6943–6951

    Article  CAS  Google Scholar 

  101. Huang K, Liu Y, Wang H, Gan T, Liu Y, Wang L (2014) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulphide-graphene composites and gold nanoparticles. Sensor Actuat B-Chem 191:828–836

    Article  CAS  Google Scholar 

  102. Yola ML, Eren T, Atar N (2014) A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 125:38–47

    Article  CAS  Google Scholar 

  103. Zhang Y, Jiang W (2012) Decorating graphene sheets with gold nanoparticles for the detection of sequence-specific DNA. Electrochim Acta 71:239–245

    Article  CAS  Google Scholar 

  104. Wang J, Shi A, Fang X, Han X, Zhang Y (2014) Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particle-decorated sheets of graphene oxide. Microchim Acta 181(9–10):935–940

    Article  CAS  Google Scholar 

  105. Chen M, Hou C, Huo D, Bao J, Fa H, Shen C (2016) An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection. Biosens Bioelectron 85:684–691

    Article  CAS  Google Scholar 

  106. Gupta VK, Yola ML, Qureshi MS, Solak AO, Atar N, Üstündağ Z (2013) A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays. Sensor Actuat B-Chem 188:1201–1211

    Article  CAS  Google Scholar 

  107. Peng H, Hu Y, Liu P, Deng Y, Wang P, Chen Y, Lin X (2015) Label-free electrochemical DNA biosensor for rapid detection of multidrug resistance gene based on Au nanoparticles/toluidine blue-graphene oxide nanocomposites. Sensor Actuat B-Chem 207:269–276

    Article  CAS  Google Scholar 

  108. Benvidi A, Firouzabadi AD, Moshtaghiun SM, Mazloum-Ardakani M, Tezerjani MD (2015) Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode. Anal Biochem 484:24–30

    Article  CAS  Google Scholar 

  109. Hajihosseini S, Nasirizadeh N, Hejazi MS, Yaghmaei P (2016) A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Mater Sc Eng C 61:506–515

    Article  CAS  Google Scholar 

  110. Ye Y, Gao J, Zhuang H, Zheng H, Sun H, Ye Y, Xu X, Cao X (2017) Electrochemical gene sensor based on a glassy carbon electrode modified with hemin-functionalized reduced graphene oxide and gold nanoparticle-immobilized probe DNA. Microchim Acta 184(1):245–252

    Article  CAS  Google Scholar 

  111. Zhang Y, Wang J, Xu M (2010) A sensitive DNA biosensor fabricated with gold nanoparticles/ploy (p-aminobenzoic acid)/carbon nanotubes modified electrode. Colloids Surf B: Biointerfaces 75(1):179–185

    Article  CAS  Google Scholar 

  112. Fayazfar H, Afshar A, Dolati M, Dolati A (2014) DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode. Anal Chim Acta 836:34–44

    Article  CAS  Google Scholar 

  113. Li L, Wang S, Yang T, Huang S, Wang J (2012) Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Biosens Bioelectron 33:279–283

    Article  CAS  Google Scholar 

  114. Dong X, Lu X, Zhang K, Zhang Y (2013) Chronocoulometric DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, poly(dopamine) and carbon nanotubes. Microchim Acta 180(1–2):101–108

    Article  CAS  Google Scholar 

  115. Huang KJ, Liu YJ, Zhang JZ, Liu YM (2015) A sequence-specific DNA electrochemical sensor based on acetylene black incorporated two-dimensional CuS nanosheets and gold nanoparticles. Sensor Actuat B-Chem 209:570–578

    Article  CAS  Google Scholar 

  116. Liu C, Jiang D, Xian G, Liu L, Liu F, Pu X (2014) An electrochemical DNA biosensor for the detection of mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst 139(21):5460–5465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Council of Scientific and Industrial Research and Department of Science and Technology of Government of India for the financial support to the Nano Science Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelakandapillai Sandhyarani.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, P.A., Sandhyarani, N. Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchim Acta 184, 981–1000 (2017). https://doi.org/10.1007/s00604-017-2143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2143-1

Keywords

Navigation