Skip to main content
Log in

Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an amperometric biosensor for the determination of organophosphate pesticides (OPs) via inhibition of the enzyme acetylcholinesterase (AChE). The enzyme was immobilized on nitrogen-doped porous carbon and then placed on boron-doped diamond (BDD). The Michaelis-Menten constant for immobilized AChE is 0.177 mmol L−1, indicating that AChE has a stronger enzymatic activity and affinity due to the introduction of nitrogen-doped porous carbon. The biosensor was applied to the determination of the OPs dichlorvos and fenitrothion. The efficiency of the inhibition by dichlorvos increases linearly in the 100 pg·L-1 to 10.0 μg·L-1 concentration range. The detection limit is as low as 1.50 pg·L-1. The inhibition by fenitrothion can be detected in the same concentration range, and the detection limit is 4.40 pg·L-1 (calculated for 10% inhibition). The unique sensitivity of this assay make it a most attractive tool for the detection of OPs.

Nitrogen-doped porous carbon is used to develop an AChE/biosensor based on a boron-doped diamond electrode. The biosensor shows higher sensitivity, lower detection limit, good reproducibility and acceptable stability towards organophosphate pesticides detection. (AChE: acetylcholinesterase; BDD: boron-doped diamond)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Barros LAD, Martins I, Rath S (2010) A selective molecularly imprinted polymer-solid phase extraction for the determination of fenitrothion in tomatoes. Analytical and Bioanalytical Chemistry 397:1355

    Article  Google Scholar 

  2. Eskandari H, Naderi-Darehshori A (2012) Preparation of magnetite/poly(styrene-divinylbenzene) nanoparticles for selective enrichment-determination of fenitrothion in environmental and biological samples. Analytica Chimica Acta 743:137

    Article  CAS  Google Scholar 

  3. Kesik M, Kanik FE, Turan J, Kolb M, Timur S, Bahadir M (2014) An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides. Sensors & Actuators B Chemical 205:39

    Article  CAS  Google Scholar 

  4. Dutta RR, Puzari P (2013) Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosensors & Bioelectronics 52:166

    Article  Google Scholar 

  5. Abolghasemi MM, Hassani S, Bamorowat M (2016) Efficient solid-phase microextraction of triazole pesticides from natural water samples using a Nafion-loaded trimethylsilane-modified mesoporous silica coating of type SBA-15. Microchimica Acta 183:889

    Article  CAS  Google Scholar 

  6. Geremedhin W, Amare M, Admassie S (2013) Electrochemically pretreated glassy carbon electrode for electrochemical detection of fenitrothion in tap water and human urine. Electrochimica Acta 87:749

    Article  CAS  Google Scholar 

  7. Krejcova Z, Barek J, Vyskocil V (2016) Voltammetric determination of fenitrothion and study of its interaction with dna at a mercury meniscus modified silver solid amalgam electrode. Monatshefte für Chemie - Chemical Monthly 147:1

    Article  Google Scholar 

  8. Salehzadeh H, Ebrahimi M, Nematollahi D, Salarian AA (2016) Electrochemical study of fenitrothion and bifenox and their simultaneous determination using multiwalled carbon nanotube modified glassy carbon electrode. Journal of Electroanalytical Chemistry 767:188

    Article  CAS  Google Scholar 

  9. Khan I, Pandit UJ, Wankar S, Das R, Limaye SN (2017) Fabrication of electrochemical nanosensor based on polyaniline film-coated AgNP-MWCNT-modified GCE and its application for trace analysis of fenitrothion. Ionics 23:1293

    Article  CAS  Google Scholar 

  10. Govindasamy M, Chen SM, Mani V, Akilarasan M, Kogularasu S, Subramani B (2016) Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchimica Acta 184:725

    Article  Google Scholar 

  11. Pelle FD, Carlo MD, Sergi M, Compagnone D, Escarpa A (2016) Press-transferred carbon black nanoparticles on board of microfluidic chips for rapid and sensitive amperometric determination of phenyl carbamate pesticides in environmental samples. Microchimica Acta 183:3143

    Article  Google Scholar 

  12. Carter JP, Noronha-Blob L, Audia VH, Dupont AC, McPherson DW, Natalie KJ Jr, Rzeszotarski WJ, Spagnuolo CJ, Waid PP, Kaiser C (2007) Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorous insecticide. Biosensors & Bioelectronics 23:130

    Article  Google Scholar 

  13. Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA (2015) Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta 144:559

    Article  CAS  Google Scholar 

  14. Huo D, Li Q, Zhang Y, Hou C, Lei Y (2014) A highly efficient organophosphorus pesticides sensor based on CuO nanowires-SWCNTs hybrid nanocomposite. Sensors & Actuators B Chemical 199:410

    Article  CAS  Google Scholar 

  15. Srivastava R, Kaur B (2015) Polyaniline-zeolite nanocomposite material based acetylcholinestrase biosensor for the sensitive detection of acetylcholine and organophosphates. New Journal of Chemistry 39:6899

    Article  Google Scholar 

  16. Chauhan N, Pundir CS (2011) An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticide. Analytica Chimica Acta 701:66

    Article  CAS  Google Scholar 

  17. Rui X, Kang TF, Lu LP, Cheng SY (2012) Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides. Applied Surface Science 258:6040

    Article  Google Scholar 

  18. Yang L, Wang G, Liu Y (2013) An acetylcholinesterase biosensor based on platinum nanoparticles-carboxylic graphene-nafion-modified electrode for detection of pesticides. Biosensors & Bioelectronics 437:144

    CAS  Google Scholar 

  19. Wei M, Zeng G, Lu Q (2014) Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchimica Acta 181:121

    Article  CAS  Google Scholar 

  20. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchimica Acta 183:2063

    Article  CAS  Google Scholar 

  21. Wei M, Wang J (2015) A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides. Sensors & Actuators B Chemical 211:290

    Article  CAS  Google Scholar 

  22. Tang J, Liu J, Li C, Li Y, Tade MO, Dai S (2015) Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angewandte Chemie 54:588

    CAS  Google Scholar 

  23. Liu Y, Zhang Y, Zhai C, Li X, Mao L (2016) Nitrogen-doped porous carbons supported pt nanoparticles for methanol oxidation in alkaline medium. Materials Letters 166:16

    Article  CAS  Google Scholar 

  24. Li Y, Han G (2012) Ionic liquid-functionalized graphene for fabricating an amperometric acetylcholinesterase biosensor. Analyst 137:3160

    Article  CAS  Google Scholar 

  25. Du D, Wang M, Cai J, Qin Y, Zhang A (2010) One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sensors & Actuators B Chemical 143:524

    Article  CAS  Google Scholar 

  26. Wu S, Zhang L, Qi L, Tao S, Lan X, Liu Z (2011) Ultra-sensitive biosensor based on mesocellular silica foam for organophosphorous pesticide detection. Biosensors & Bioelectronics 26:2864

    Article  CAS  Google Scholar 

  27. Guan H, Zhang F, Yu J, Chi D (2012) The novel acetylcholinesterase biosensors based on liposome bioreactors-chitosan nanocomposite film for detection of organophosphates pesticides. Food Research International 49:15–21

    Article  CAS  Google Scholar 

  28. Wu S, Huang F, Lan X, Wang X, Wang J, Meng C (2013) Electrochemically reduced graphene oxide and nafion nanocomposite for ultralow potential detection of organophosphate pesticide. Sensors & Actuators B Chemical 177:724

    Article  CAS  Google Scholar 

  29. Kumaravel A, Chandrasekaran M (2011) A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. Journal of Electroanalytical Chemistry 650:163

    Article  CAS  Google Scholar 

  30. Zhao L, Zhao F, Zeng B (2014) Synthesis of water-compatible surface-imprinted polymer via click chemistry and raft precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosensors & Bioelectronics 62:19

    Article  CAS  Google Scholar 

  31. Kaur N, Thakur H, Kumar R, Prabhakar N (2016) An electrochemical sensor modified with poly(3,4-ethylenedioxythiophene)-wrapped multi-walled carbon nanotubes for enzyme inhibition-based determination of organophosphates. Microchim Acta 183:2307

    Article  CAS  Google Scholar 

  32. Wei M, Sun L-G, Xie Z-Y, Zhi J-F, Fujishima A, Einaga Y, Fu D-G, Wang X-M, Gu Z-Z (2008) Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids. Advanced Functional Materials 18:141

    Google Scholar 

  33. Yang Y, Asiri AM, Du D, Lin Y (2014) Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139:3055

    Article  CAS  Google Scholar 

  34. Gong J, Wang X, Li X, Wang K (2012) Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays. Biosensors and Bioelectronics 38:43

    Article  CAS  Google Scholar 

  35. Dong J, Liu T, Meng XM, Zhu JY, Shang K, Ai SY, Cui SL (2012) Amperometric biosensor based on immobilization of acetylcholinesterase via specific binding on biocompatible boronic acid-functionalized Fe@Au magnetic nanoparticles. Journal of Solid State Electrochemistry 16:3783

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (2016RCJH04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wei.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Feng, S. Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Microchim Acta 184, 3461–3468 (2017). https://doi.org/10.1007/s00604-017-2380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2380-3

Keywords

Navigation