Skip to main content

Advertisement

Log in

Metal organic frameworks in electrochemical and optical sensing platforms: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are porous coordination polymers (CP) produced by metal-based nodes and multitopic organic ligands. Based on their porous and microcrystalline powder structures, they have initially been used for storage, catalysis and separation. Then, because of their advantageous properties like ease of the tailoring, they also have been applied in areas like chemical sensing, biological applications, etc. The CPs were combined with molecules such as organic dyes, small biomolecules, nanomaterials like nanoparticles, nanowires, nanofibers and polymers and as a result, composite MOFs have been produced. By this way, better mechanical stability, conductivity, and catalytic performance were obtained. This review (with 135 refs.) summarizes the progress made in the past years in the field of electrochemical and optical sensing based on the use of MOFs. Following an introduction into the field, large sections cover MOF based sensors exploiting (a) carbon nanomaterials (with subsections on carbon nanotubes, graphene and its derivatives), (b) metal/metal oxide MOFs; including gold, silver, copper and/or copper oxide nanoparticle and other metal/MOF composites. Enzyme mimicking MOFs are discussed next. In this context, after the brief information about focused MOFs, the nanomaterial/MOF composites were discussed and related examples were presented.

MOF structures in Sensing Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4.
Fig. 5

Similar content being viewed by others

References

  1. Wang H-S (2017) Metal–organic frameworks for biosensing and bioimaging applications. Coord Chem Rev 349:139–155

    CAS  Google Scholar 

  2. Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P (2016) Nanostructured metal–organic frameworks and their bio-related applications. Coord Chem Rev 307:342–360

    Google Scholar 

  3. Zhou HC, Kitagawa S (2014) Metal-organic frameworks (MOFs). Chem Soc Rev 43:5415–5418

    CAS  PubMed  Google Scholar 

  4. Yang Q, Xu Q, Jiang H-L (2017) Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46:4774–4808

    CAS  PubMed  Google Scholar 

  5. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc Chem Res 34:319–330

    CAS  PubMed  Google Scholar 

  6. Fe’rey G, Mellot-Draznieks C, Serre C, Millange F (2005) Crystallized frameworks with giant pores: are there limits to the possible? Acc Chem Res 38:217–225

    Google Scholar 

  7. Hill RJ, Long D-L, Champness NR, Hubberstey P, Schröder M (2005) New approaches to the analysis of high connectivity materials: design frameworks based upon 44- and 63-subnet Tectons. Acc Chem Res 38:335–348

    CAS  PubMed  Google Scholar 

  8. Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267

    CAS  PubMed  Google Scholar 

  9. Qiu S, Zhu G (2009) Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coord Chem Rev 253:2891–2911

    CAS  Google Scholar 

  10. Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang O, Gentle T III, Boschand M, Zhou H-C (2014) Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev 43:5561–5593

    CAS  PubMed  Google Scholar 

  11. Shaozhou L, Fengwei H (2015) Metal–organic framework composites: from fundamentals to applications. Nanoscale 7:7482–7501

    Google Scholar 

  12. Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111:5962–5964

    CAS  Google Scholar 

  13. Hoskins BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4″'-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J Am Chem Soc 112:1546–1554

    CAS  Google Scholar 

  14. Venkataraman D, Gardner GB, Lee S, Moore JS (1995) Zeolite-like behavior of a coordination network. J Am Chem Soc 117:11600–11601

    CAS  Google Scholar 

  15. Gardner GB, Venkataraman D, Moore JS, Lee S (1995) Spontaneous assembly of a hinged coordination network. Nature 374:792–795

    CAS  Google Scholar 

  16. Yaghi OM, Li GM, Li HL (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378:703–706

    CAS  Google Scholar 

  17. Subramanian S, Zaworotko MJ (1995) Porous solids by design: [Zn(4,4′-bpy)2(SiF6)]n·xDMF, a single framework octahedral coordination polymer with large square Channels. Angew Chem Int Ed Eng 34:2127–2129

    CAS  Google Scholar 

  18. Millward AR, Yaghi OM (2005) Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    CAS  PubMed  Google Scholar 

  19. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang J-S, Hwang YK, Marsaud V, Bories P-N, Cynober L, Gil S, Ferey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    CAS  PubMed  Google Scholar 

  20. Cui Y, Li B, He H, Zhou W, Chen B, Qian G (2016) Metal-organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493

    CAS  PubMed  Google Scholar 

  21. He C, Liu D, Lin W (2015) Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale. Coordination Polymers Chem Rev 115:11079–11108

    CAS  PubMed  Google Scholar 

  22. Heinke L, Tu M, Wannapaiboon S, Fischer RA, Woell C (2015) Surface-mounted metal-organic frameworks for applications in sensing and separation. Microporous Mesoporous Mater 216:200–215

    CAS  Google Scholar 

  23. Betard A, Fischer RA (2012) Metal–organic framework thin films: from fundamentals to applications. Chem Rev 112:1055–1083

    CAS  PubMed  Google Scholar 

  24. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    CAS  PubMed  Google Scholar 

  25. Zhu Q, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512

    CAS  PubMed  Google Scholar 

  26. Ahmed I, Jhung S (2014) Composites of metal–organic frameworks: preparation and application in adsorption. Mater Today 17:136–146

    CAS  Google Scholar 

  27. Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Kim K-H (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129

    CAS  Google Scholar 

  28. Wang H, Zhu Q-L, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications. Chemistry 2:52–80

    CAS  Google Scholar 

  29. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés i Xamena FX, Gascon J (2015) Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14:48–55

    CAS  PubMed  Google Scholar 

  30. Lei J, Qian R, Ling P, Cui L, Ju H (2014) Design and sensing applications of metal–organic framework composites. TrAC Trends Anal Chem 58:71–78

    CAS  Google Scholar 

  31. Liu X-W, Sun T-J, Huab JL, Wang S-D (2016) Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. J Mater Chem A 4:3584–3616

    CAS  Google Scholar 

  32. Lian X, Fang Y, Joseph E, Wang Q, Li J, Banerjee S, Lollar C, Wang X, Zhou H-C (2017) Enzyme–MOF (metal–organic framework) composites. Chem Soc Rev 46:3386–3401

    CAS  PubMed  Google Scholar 

  33. Monzon LMA, Burke F, Coey JMD (2011) Optical, magnetic, electrochemical, and electrical properties of 8-Hydroxyquinoline-based complexes with Al3+, Cr3+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. J Phys Chem C 115:9182–9192

    CAS  Google Scholar 

  34. Mao J, Yang L, Yu P, Wei X, Mao L (2012) Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks. Electrochem Commun 19:29–31

    CAS  Google Scholar 

  35. Li Y, Huangfu C, Du H, Liu W, Li Y, Ye J (2013) Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: an excellent candidate for electroanalysis. J Electroanal Chem 709:65–69

    CAS  Google Scholar 

  36. Rocha J, Carlos LD, Paz FAA, Ananias D (2011) Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem Soc Rev 40:926–940

    CAS  PubMed  Google Scholar 

  37. Kang Y, Wang F, Zhang J, Bu X (2012) Luminescent MTN-type cluster–organic framework with 2.6 nm cages. J Am Chem Soc 134:17881–17884

    CAS  PubMed  Google Scholar 

  38. Shan XC, Jiang FL, Yuan DQ, Zhang HB, Wu MY, Chen L, Wei J, Zhang SQ, Pan J, Hong MC (2013) A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. Chem Sci 4:1484–1489

    CAS  Google Scholar 

  39. Hu Z, Deibert BJ, Li J (2014) Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43:5815–5840

    CAS  PubMed  Google Scholar 

  40. Cui Y, Yue Y, Qian G, Chen B (2012) Luminescent functional metal–organic frameworks. Chem Rev 112:1126–1162

    CAS  PubMed  Google Scholar 

  41. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330–1352

    CAS  PubMed  Google Scholar 

  42. Cui Y, Zhu F, Chen B, Qian G (2015) Metal–organic frameworks for luminescence thermometry. Chem Commun 51:7420–7431

    CAS  Google Scholar 

  43. Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968

    CAS  PubMed  Google Scholar 

  44. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44

    CAS  Google Scholar 

  45. Merkoci A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174

    CAS  Google Scholar 

  46. Travlou NA, Singh K, Rodriguez-Castellon E, Bandosz TJ (2015) Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors. J Mater Chem A 3:11417–11429

    CAS  Google Scholar 

  47. Cevik S, Anik U (2009) Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor. Microchim Acta 166:209–213

    Google Scholar 

  48. Timur S, Anik U, Odaci D, Gorton L (2007) Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem Commun 9:1810–1815. https://doi.org/10.1016/j.elecom.2007.04.012

    Article  CAS  Google Scholar 

  49. Wang M-Q, Zhang Y, Bao S-J, Yua Y-N, Yeb C (2016) Ni(II)-based metal-organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing. Electrochim Acta 190:365–370

    CAS  Google Scholar 

  50. Zhou E, Zhang Y, Li Y, He X (2014) Cu(II)-based MOF immobilized on multiwalled carbon nanotubes: synthesis and application for nonenzymatic detection of hydrogen peroxide with high sensitivity. Electroanalysis 26:2526–2533

    CAS  Google Scholar 

  51. Wen P, Gong P, Sun J, Wang J, Yang S (2015) Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A 3:13874–13883

    CAS  Google Scholar 

  52. Yang J, Zhou B, Yao J, Jiang X-Q (2015) Nanorods of a new metal–biomolecule coordination polymer showing novel bidirectional electrocatalytic activity and excellent performance in electrochemical sensing. Biosens Bioelectron 67:66–72

    CAS  PubMed  Google Scholar 

  53. Chappanda KN, Shekhah O, Yassine O, Patole SP, Eddaoudi M, Salama KN (2018) The quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study. Sensors Actuators B 257:609–619

    CAS  Google Scholar 

  54. Ghanbarian M, Seinali S, Mostafavi A (2018) A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. Sensors Actuators B 267:381–391

    CAS  Google Scholar 

  55. Tran TQN, Das G, Yoon HH (2017) Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection. Sensors Actuators B 243:78–83

    CAS  Google Scholar 

  56. Zhou J, Li X, Yang L, Yan S, Wang M, Cheng D, Chen Q, Dong Y, Liu P, Cai W, Zhang C (2015) The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal Chim Acta 899:57–65

    CAS  PubMed  Google Scholar 

  57. Wang F, Zhao J, Gong J, Wen L, Zhou L, Li D (2012) New multifunctional porous materials based on inorganic–organic hybrid single-walled carbon nanotubes: gas storage and high-sensitive detection of pesticides. Chem - A Eur J 18:11804–11810

    CAS  Google Scholar 

  58. Li J, Xia J, Zhang F, Wang Z, Liu Q (2018) An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 181:80–86

    CAS  PubMed  Google Scholar 

  59. Ding D, Xue Q, Lu W, Xiong Y, Zhang J, Pan X, Tao B (2018) Chemically functionalized 3D reticular graphene oxide frameworks decorated with MOF-derived Co3O4: towards highly sensitive and selective detection to acetone. Sensors Actuators B Chem 259:289–298

    CAS  Google Scholar 

  60. Peng B, Cui J, Wang Y, Liu J, Zheng H, Jin L, Zhang X, Zhang Y, Wu Y (2018) CeO2−x/C/rGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. Nanoscale 10:1939–1945

    CAS  PubMed  Google Scholar 

  61. Chen Q, Li X, Min X, Cheng D, Zhou J, Li Y, Xie Z, Liu P, Cai W, Zhang C (2017) Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode. J Electroanal Chem 789:114–122

    CAS  Google Scholar 

  62. Saraf M, Rajak R, Mobin SM (2016) A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J Mater Chem A 4:16432–16445

    CAS  Google Scholar 

  63. Yang Y, Wang Q, Qiu W, Guo H, Gao F (2016) Covalent immobilization of Cu3(btc)2 at chitosan–Electroreduced graphene oxide hybrid film and its application for simultaneous detection of Dihydroxybenzene isomers. J Phys Chem C 120(18):9794–9803

    CAS  Google Scholar 

  64. Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188

    CAS  PubMed  Google Scholar 

  65. Tepeli Y, Anik Ü (2016) Preparation, characterization and electrochemical application of graphene-metallic nanocomposites. Electroanalysis 28:3048–3054

    CAS  Google Scholar 

  66. Kung C-W, Li Y-S, Lee M-H, Wang S-Y, Chiang W-H, Ho K-C (2016) In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. J Mater Chem A 4:10673–10682

    CAS  Google Scholar 

  67. Asadian E, Shahrokhian S, Zad AI (2018) Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite. J Electroanal Chem 808:114–123

    CAS  Google Scholar 

  68. Kalyoncu D, Tepeli Y, Kırgöz U, Buyrac A, Anik U (2017) Electro-nano diagnostic platforms for simultaneous detection of multiple Cancer biomarkers. Electroanalysis 29:2832–2838

    CAS  Google Scholar 

  69. Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloote R, Evan JD, Doonan CJ (2016) Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev 307:237–254

    CAS  Google Scholar 

  70. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    CAS  PubMed  Google Scholar 

  71. Cubukcu M, Ertas FN, Anik U (2013) Centri-voltammetric determination of glutathion. Microchim Acta 180:93–100

    CAS  Google Scholar 

  72. Wang H, Jian Y, Kong Q, Liu H, Lan F, Liang L, Gea S, Yua J (2018) Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks. Sensors Actuators B 257:561–569

    CAS  Google Scholar 

  73. Song Y, Xu M, Gong C, Shen Y, Wang L, Xie Y, Wang L (2018) Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode. Sensors Actuators B 257:792–799

    CAS  Google Scholar 

  74. Yang Q, Liu W, Wang B, Zhang W, Zeng X, Zhang C, Qin Y, Sun X, Wu T, Liu J, Huo F, Lu J (2016) Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat Commun 8:14429 1–9

    Google Scholar 

  75. Cai K, Zeng M, Liu F, Liu N, Huang Z, Song Y, Wang L (2017) BSA–AuNPs@Tb–AMP metal–organic frameworks for ratiometric fluorescence detection of DPA and Hg2+. Luminescence 32:1277–1282

    CAS  PubMed  Google Scholar 

  76. Song Y, Chen J, Hu D, Liu F, Li P, Li H, Chen S, Tan H, Wang L (2015) Ratiometric fluorescent detection of biomakers for biological warfare agents with carbon dots chelated europium-based nanoscale coordination polymers. Sensors Actuators B 221:586–592

    CAS  Google Scholar 

  77. Wu L, Guo Q, Liu Y, Sun Q (2015) Fluorescence resonance energy transfer-based Ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem 87:5318–5323

    CAS  PubMed  Google Scholar 

  78. Xu R, Wang Y, Duan X, Lu K, Micheroni D, Hu A, Lin W (2016) Nanoscale metal-organic frameworks for Ratiometric oxygen sensing in live cells. J Am Chem Soc 138:2158–2161

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Qi L, Wei J-R, Lv X-J, Huo Y, Zhang Z-Q (2016) A ratiometric fluorescence RRE RNA-targeted assay for a new fluorescence ligand. Biosens Bioelectron 86:287–292

    CAS  PubMed  Google Scholar 

  80. Tang J, Ma S, Zhang D, Liu Y, Zhao Y, Ye Y (2016) Highly sensitive and fast responsive ratiometric fluorescent probe for Cu2+ based on a naphthalimide-rhodamine dyad and its application in living cell imaging. Sensors Actuators B 236:109–115

    CAS  Google Scholar 

  81. Santoro S, Moro AJ, Portugal C, Crespo JG, Lima JC, Coelhoso IM (2016) Monitoring oxygen permeation through polymeric packaging films using a ratiometric luminescent sensor. J Food Eng 189:37–44

    CAS  Google Scholar 

  82. Dinca M, Long JR (2005) Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. J Am Chem Soc 127:9376–9377

    CAS  PubMed  Google Scholar 

  83. Sugikawa K, Nagata S, Furukawa Y, Kokado K, Sada K (2013) Stable and functional gold Nanorod composites with a metal–organic framework crystalline Shell. Chem Mater 25:2565–2570

    CAS  Google Scholar 

  84. Xu Z, Yang L, Xu C (2015) Pt@UiO-66 Heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal Chem 87:3438–3444

    CAS  PubMed  Google Scholar 

  85. Zhan W-W, Kuang Q, Zhou J-Z, Kong X-J, Xie Z-X, Zheng L-S (2013) Semiconductor@metal–organic framework Core–Shell Heterostructures: a case of ZnO@ZIF-8 Nanorods with selective Photoelectrochemical response. J Am Chem Soc 135(5):1926–1933

    CAS  PubMed  Google Scholar 

  86. Buso D, Jasieniak J, Lay MDH, Schiavuta P, Scopece P, Laird J, Amenitsch H, Hill AJ, Faicaro P (2012) Highly luminescent metal–organic frameworks through quantum dot doping. Small 8(1):80–88

    CAS  PubMed  Google Scholar 

  87. He L, Liu Y, Liu J, Xiong Y, Zheng J, Liu Y, Tang Z (2013) Core–Shell Noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew Chem Int Ed 52:3741–3745

    CAS  Google Scholar 

  88. Zhao D, Wan X, Song H, Hao L, Su Y, Lv Y (2014) Metal–organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sensors Actuators B 197:50–57

    CAS  Google Scholar 

  89. Lu G, Farha OK, Kreno LE, Schoenecker PM, Walton KS (2011) Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing. Adv Mater 23:4449–4452

    CAS  PubMed  Google Scholar 

  90. Dong W, Zhuang Y, Li S, Zhang X, Chai H, Huang Y (2018) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors Actuators B Chem 255:2050–2057

    CAS  Google Scholar 

  91. Guo ZY, Zheng Z, Lin H, Zhang Y (2017) Facile one-pot fabrication of Ag@MOF(Ag) nanocomposites for highly selective detection of 2,4,6-trinitrophenol in aqueous phase. Talanta 170:146–151

    CAS  PubMed  Google Scholar 

  92. Chen J, Xu Q, Shu Y, Hu X (2018) Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 184:136–142

    CAS  PubMed  Google Scholar 

  93. Yang J, Yang L, He Y, Zhao F, Zeng B (2016) Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH2 metal-organic framework for the detection of nitrite. Electrochim Acta 219:647–654

    CAS  Google Scholar 

  94. Shi L, Zhu X, Liu T, Zhao H, Lan M (2016) Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. Sensors Actuators B Chem 227:583–590

    CAS  Google Scholar 

  95. Silva CTPD, Veregue FR, Aguiar LW, Meneguin JG, Moisés MP, Fávaro SL, Radovanovic E, Girotto EM, Rinaldi AW (2016) AuNp@MOF composite as electrochemical material for determination of bisphenol A and its oxidation behavior study. New J Chem 40:8872–8877

    Google Scholar 

  96. Qu F, Sun C, Lv X, You J (2018) A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Microchim Acta 185:359

    Google Scholar 

  97. Wang Y, Wang S, Chen Y (2017) Detection of cyanide via extended π-conjugation-induced fluorescence enhancement of a metal organic framework composed of terbium(III), bipyridyl and adenosine diphosphate. Microchim Acta 184:4597–4602

    CAS  Google Scholar 

  98. Wu T, Wei X, Ma X, Li J (2017) Amperometric sensing of L-phenylalanine using a gold electrode modified with a metal organic framework, a molecularly imprinted polymer, and β-cyclodextrin-functionalized gold nanoparticles. Microchim Acta 184(8):2901–2907

    CAS  Google Scholar 

  99. Wang Y, Cao W, Wang L, Zhuang Q, Ni Y (2018) Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide. Microchim Acta 185(6):315

    Google Scholar 

  100. Zhang L, Li S, Xin J, Ma H, Pang H, Tan L, Wang X (2019) A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Microchim Acta 186(1):9

    Google Scholar 

  101. Yao P, Zhang J, Xing T, Chen G, Tao R, Chong K-H (2018) Green synthesis of silver nanoparticles using grape seed extract and their application for reductive catalysis of direct Orange 26. J Ind Eng Chem 58:74–79

    Google Scholar 

  102. Xu S, Chen S, Zhang F, Jiao C, Song J, Chen Y, Lin H, Gotoh Y, Morikawa H (2016) Preparation and controlled coating of hydroxyl-modified silver nanoparticles on silk fibers through intermolecular interaction-induced self-assembly. Mater Des 95:107–118

    CAS  Google Scholar 

  103. Shanmugaraj K, Ilanchelian M (2016) Colorimetric determination of sulfide using chitosan-capped silver nanoparticles. Microchim Acta 183:1721–1728

    CAS  Google Scholar 

  104. Mohammadi S, Khayatian G (2015) Highly selective and sensitive photometric creatinine assay using silver nanoparticles. Microchim Acta 182:1379–1386

    CAS  Google Scholar 

  105. Aragay G, Merkoçi A (2012) Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta 84:49–61

    CAS  Google Scholar 

  106. Bagheri N, Khatae A, Habibi B, Hassanzadeh J (2018) Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–718

    CAS  PubMed  Google Scholar 

  107. Meng W, Wen Y, Dai L, He Z, Wang L (2018) A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sensors Actuators B Chem 260:852–860

    CAS  Google Scholar 

  108. Rösler C, Fischer RA (2015) Metal-organic frameworks as hosts for nanoparticles. Cryst Eng Comm 17:199–217

    Google Scholar 

  109. Samadi-Maybodi A, Ghasemi S, Ghaffari-Rad H (2015) A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine. Sensors Actuators B 220:627–633

    CAS  Google Scholar 

  110. Yu C, Cui J, Wang Y, Zheng H, Zhang J, Shu X, Liu J, Zhang Y, Wu Y (2018) Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/ Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity. Appl Surf Sci 439:11–17

    CAS  Google Scholar 

  111. Zhang L, Ye C, Li X, Ding Y, Liang H, Zhao G, Wang Y (2018) A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro Letters 10(28):1–10

    Google Scholar 

  112. Gao A, Zhang X, Peng X, Wu H, Bai L, Jin W, Wu G, Hang R, Chu PK (2016) In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing. Sensors Actuators B Chem 232:150–157

    CAS  Google Scholar 

  113. Garcia-Garcia FJ, Salazar P, Yubero F, González-Elipe AR (2016) Non-enzymatic glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim Acta 201:38–44

    CAS  Google Scholar 

  114. Zhao Y, Fan LZ, Hong B, Ren JL, Zhang MS, Que QM, Ji JY (2016) Nonenzymatic detection of glucose using three-dimensional PtNi nanoclusters electrodeposited on the multiwalled carbon nanotubes. Sens. Actuators B 231:800–810

    CAS  Google Scholar 

  115. Ci SQ, Huang TZ, Wen ZH, Cui SM, Mao S, Steeber DA, Chen JH (2014) Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens Bioelectron 54:251–2575

    CAS  PubMed  Google Scholar 

  116. Zhao J, Wei L, Peng C, Su Y, Yang Z, Zhang L, Wei H, Zhang Y (2013) A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes. Biosens Bioelectron 47(17):86–91

    CAS  PubMed  Google Scholar 

  117. Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180(3):161–186

    CAS  Google Scholar 

  118. Zaidi SA, Shin JH (2016) Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149:30–42

    CAS  PubMed  Google Scholar 

  119. Soomro RA, Nafady A, Ibupoto ZH, Sirajuddin STH, Sherazi M, Abro Willander MI (2015) Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. Mater Sci Semicond Process 34:373–381

    CAS  Google Scholar 

  120. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5(9):1246–1301

    CAS  Google Scholar 

  121. Zhang L, Ding YR, Li RR, Ye C, Zhao GY, Wang Y (2017) Ni-based metal-organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J Mater Chem B 5(28):5549–5555

    CAS  Google Scholar 

  122. Haldorai Y, Choe SR, Huh YS, Han YK (2018) A composite consisting of microporous carbon and cobalt(III) oxide and prepared from zeolitic imidazolate framework-67 for voltammetric determination of ascorbic acid. Microchim Acta 185(2):116

    Google Scholar 

  123. Abdelhamid HN, Bermejo-Gómez A, Martín-Matute B, Zou X (2017) A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Microchim Acta 184(9):3363–3371

    CAS  Google Scholar 

  124. Jin D, Xu Q, Yu L, Hu X (2015) Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125 (Ti)/TiO2. Microchim Acta 182(11–12):1885–1892

    CAS  Google Scholar 

  125. Vilian AE, Dinesh B, Muruganantham R, Choe SR, Kang SM, Huh YS, Han YK (2017) A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite. Microchim Acta 184(12):4793–4801

    Google Scholar 

  126. He J, Li G, Hu Y (2017) Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: highly selective and sensitive determination of thrombin and oxytetracycline. Microchim Acta 184(7):2365–2373

    CAS  Google Scholar 

  127. Wang N, Duan J, Shi W, Zhai X, Guan F, Yang L, Hou B (2018) A 3-dimensional C/CeO2 hollow nanostructure framework as a peroxidase mimetic, and its application to the colorimetric determination of hydrogen peroxide. Microchim Acta 185(9):417

    Google Scholar 

  128. Ma X, Li S, Pang C, Xiong Y, Li J (2018) A Cu(II)-anchored unzipped covalent triazine framework with peroxidase-mimicking properties for molecular imprinting–based electrochemiluminescent detection of sulfaquinoxaline. Microchim Acta 185(12):546

    Google Scholar 

  129. Wang C, Tang G, Tan H (2018) Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim Acta 185(10):475

    Google Scholar 

  130. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635

    CAS  Google Scholar 

  131. Wan Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438

    Google Scholar 

  132. Ortiz-Gómez I, Salinas-Castillo A, García AG, Álvarez-Bermejo JA, de Orbe-Payá I, Rodríguez-Diéguez A, Capitán-Vallvey LF (2018) Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchim Acta 185(1):47

    Google Scholar 

  133. Akyazı T, Basabe-Desmonds L, Benito-Lopez F (2018) Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta 1001:1–17

    PubMed  Google Scholar 

  134. Taylor-Pashow KML, Rocca JD, Xie Z, Tran S, Lin W (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc 131(40):14261–14263

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang M, Tang J, Ma Q, Zheng N, Tan L (2015) High activity Fe-MIL-101 solid acid catalyst for acetalization of aldehydes with methanol and enamination of b-dicarbonyl compounds. J Porous Mater 22(5):1345–1350

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ülkü Anik or Suna Timur.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anik, Ü., Timur, S. & Dursun, Z. Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta 186, 196 (2019). https://doi.org/10.1007/s00604-019-3321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3321-0

Keywords

Navigation