Skip to main content

Advertisement

Log in

Dengue virus: a review on advances in detection and trends – from conventional methods to novel biosensors

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Dengue virus is an important arbovirus infection which transmitted by the Aedes female mosquitoes. The attempt to control and early detection of this infection is a global public health issue at present. Because of the clinical importance of its detection, the main focus of this review is on all of the methods that can offer the new diagnosis strategies. The advantages and disadvantages of reported methods have been discussed comprehensively from different aspects like biomarkers type, sensitivity, accuracy, rate of detection, possibility of commercialization, availability, limit of detection, linear range, simplicity, mechanism of detection, and ability of usage for clinical applications. The optical, electrochemical, microfluidic, enzyme linked immunosorbent assay (ELISA), and smartphone-based biosensors are the main approaches which developed for detection of different biomarkers and serotypes of Dengue virus. Future efforts in miniaturization of these methods open the horizons for development of commercial biosensors for early-diagnosis of Dengue virus infection.

Transmission of Dengue virus by the biting of an Aedes aegypti mosquito, the symptoms of Dengue hemorrhagic fever and the structure of Dengue virus and application of biosensors for its detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Organization WH, Research SPf, Diseases TiT, Diseases WHODoCoNT, Epidemic WHO, Alert P (2009) Dengue: guidelines for diagnosis, treatment, prevention and control: World Health Organization

  2. Tuiskunen Bäck A, Lundkvist Å (2013) Dengue viruses–an overview. Infect Ecol Epidemiol 3:19839

    Google Scholar 

  3. Teixeira MG, Siqueira JB Jr, Ferreira GL, Bricks L, Joint G (2013) Epidemiological trends of dengue disease in Brazil (2000–2010): a systematic literature search and analysis. PLoS Negl Trop Dis 7:e2520

    PubMed  PubMed Central  Google Scholar 

  4. Guzmán MG, Kourí G (2004) Dengue diagnosis, advances and challenges. Int J Infect Dis 8:69–80

    PubMed  Google Scholar 

  5. Sekaran SD, Soe HJ (2017) Issues in contemporary and potential future molecular diagnostics for dengue. Expert Rev Mol Diagn 17:217–223

    CAS  PubMed  Google Scholar 

  6. Rodríguez RA, Pepper IL, Gerba CP (2009) Application of PCR-based methods to assess the infectivity of enteric viruses in environmental samples. Appl Environ Microbiol 75:297–307

    PubMed  Google Scholar 

  7. Ariffin EY, Tan LL, Abd Karim NH, Yook Heng L (2018) Optical DNA biosensor based on square-planar ethyl Piperidine substituted nickel (II) Salphen complex for dengue virus detection. Sensors 18:1173

    Google Scholar 

  8. Teles FSRR (2011) Biosensors and rapid diagnostic tests on the frontier between analytical and clinical chemistry for biomolecular diagnosis of dengue disease: a review. Anal Chim Acta 687:28–42

    CAS  PubMed  Google Scholar 

  9. Darwish NT, Sekaran SD, Alias Y, Khor SM (2018) Immunofluorescence–based biosensor for the determination of dengue virus NS1 in clinical samples. J Pharm Biomed Anal 149:591–602

    CAS  PubMed  Google Scholar 

  10. Romano S, Lamberti A, Masullo M, Penzo E, Cabrini S, Rendina I et al (2018) Optical biosensors based on photonic crystals supporting bound states in the continuum. Materials 11:526

    PubMed Central  Google Scholar 

  11. Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, de la Guardia M, Hejazi M, Sohrabi H et al (2018) Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. Trends Anal Chem 103:184–197

    CAS  Google Scholar 

  12. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    CAS  PubMed  Google Scholar 

  13. Pashazadeh P, Mokhtarzadeh A, Hasanzadeh M, Hejazi M, Hashemi M, de la Guardia M (2017) Nano-materials for use in sensing of salmonella infections: recent advances. Biosens Bioelectron 87:1050–1064

    CAS  PubMed  Google Scholar 

  14. Zhou H, Liu J, Xu J-J, Zhang S-S, Chen H-Y (2018) Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 47:1996–2019

    CAS  PubMed  Google Scholar 

  15. Kamil YM, Bakar MA, Mustapa M, Yaacob M, Abidin N, Syahir A et al (2018) Label-free dengue E protein detection using a functionalized tapered optical fiber sensor. Sensors Actuators B Chem 257:820–828

    Google Scholar 

  16. Santos A, Bueno PR, Davis JJ (2018) A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosens Bioelectron 100:519–525

    CAS  PubMed  Google Scholar 

  17. Goddard JM, Mandal S, Nugen SR, Baeumner AJ, Erickson D (2010) Biopatterning for label-free detection. Colloids Surf B Biointerfaces 76:375–380

    CAS  PubMed  Google Scholar 

  18. Mandal S, Goddard J, Erickson D (2008) Nanoscale optofluidic sensor arrays for Dengue virus detection, Conference on Lasers and Electro-Optics: Optical Society of America, p. CThZ5

  19. Huang MC, Mateus CF, Foley JE, Beatty R, Cunningham BT, Chang-Hasnain CJ (2008) VCSEL optoelectronic biosensor for detection of infectious diseases. IEEE Photon Technol Lett 20:443–445

    CAS  Google Scholar 

  20. Carrillo C, Werbajh S, Malnero C, Stolowicz F, Larocca L, Malirat V et al (2018) Development of a colorimetric RT-LAMP amplification assay adapted to an early and easy detection of dengue virus. Int J Infect Dis 73:171

    Google Scholar 

  21. Rahman SA, Saadun R, Azmi NE, Ariffin N, Abdullah J, Yusof NA et al (2014) Label-free dengue detection utilizing PNA/DNA hybridization based on the aggregation process of unmodified gold nanoparticles. J Nanomater 2014:106

    Google Scholar 

  22. Ferraz FO, Bomfim MRQ, Totola AH, Ávila TV, Cisalpino D, Pessanha JEM et al (2013) Evaluation of laboratory tests for dengue diagnosis in clinical specimens from consecutive patients with suspected dengue in Belo Horizonte, Brazil. J Clin Virol 58:41–46

    PubMed  Google Scholar 

  23. Tricou V, Vu HT, Quynh NV, Nguyen CV, Tran HT, Farrar J et al (2010) Comparison of two dengue NS1 rapid tests for sensitivity, specificity and relationship to viraemia and antibody responses. BMC Infect Dis 10:142

    PubMed  PubMed Central  Google Scholar 

  24. Pal S, Dauner AL, Mitra I, Forshey BM, Garcia P, Morrison AC et al (2014) Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples. PLoS One 9:e113411

    PubMed  PubMed Central  Google Scholar 

  25. Sánchez-Vargas LA, Sánchez-Marce EE, Vivanco-Cid H (2014) Evaluation of the SD BIOLINE dengue duo rapid test in the course of acute and convalescent dengue infections in a Mexican endemic region. Diagn Microbiol Infect Dis 78:368–372

    PubMed  Google Scholar 

  26. Fu C, Gu Y, Wu Z, Wang Y, Xu S, Xu W (2014) Surface-enhanced Raman scattering (SERS) biosensing based on nanoporous dielectric waveguide resonance. Sensors Actuators B Chem 201:173–176

    CAS  Google Scholar 

  27. Dinish U, Balasundaram G, Chang Y-T, Olivo M (2014) Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep 4:4075

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia X, Li W, Zhang Y, Xia Y (2013) Silica-coated dimers of silver nanospheres as surface-enhanced Raman scattering tags for imaging cancer cells. Interface Focus 3:20120092

    PubMed  PubMed Central  Google Scholar 

  29. Yuan W, Ho HP, Lee RK, Kong SK (2009) Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates. Appl Opt 48:4329–4337

    CAS  PubMed  Google Scholar 

  30. Ngo HT, Wang H-N, Fales AM, Nicholson BP, Woods CW, Vo-Dinh T (2014) DNA bioassay-on-chip using SERS detection for dengue diagnosis. Analyst 139:5655–5659

    CAS  PubMed  Google Scholar 

  31. Sánchez-Purrà M, Carré-Camps M, de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K (2017) Surface-enhanced Raman spectroscopy-based sandwich immunoassays for multiplexed detection of Zika and dengue viral biomarkers. ACS Infect Dis 3:767–776

    PubMed  Google Scholar 

  32. Moran K, Lemass D, O'Kennedy R (2018) Surface Plasmon resonance–based immunoassays: approaches, performance, and applications. Elsevier, Handbook of Immunoassay Technologies, pp 129–156

    Google Scholar 

  33. Mohammadzadeh-Asl S, Keshtkar A, Dolatabadi JEN, de la Guardia M (2018) Nanomaterials and phase sensitive based signal Enhancment in surface Plasmon resonance. Biosens Bioelectron 110:118–131

    CAS  PubMed  Google Scholar 

  34. Hage DS (2018) Development of Immunochromatographic assays for the selective detection of Zika virus or dengue virus serotypes in serum. Clin Chem 64:991–993

    CAS  PubMed  Google Scholar 

  35. Mahmoudpour M, Dolatabadi JEN, Torbati M, Homayouni-Rad A (2018) Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions. Biosens Bioelectron 127:72–84

    PubMed  Google Scholar 

  36. Hu D, Fry SR, Huang JX, Ding X, Qiu L, Pan Y et al (2013) Comparison of surface plasmon resonance, resonant waveguide grating biosensing and enzyme linked immunosorbent assay (ELISA) in the evaluation of a dengue virus immunoassay. Biosensors 3:297–311

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Krupin O, Wong WR, Adikan FRM, Berini P (2017) Detection of small molecules using long-range surface Plasmon Polariton waveguides. IEEE J Sel Top Quantum Electron 23:103–112

    Google Scholar 

  38. Berini P (2008) Bulk and surface sensitivities of surface plasmon waveguides. New J Phys 10:105010

    Google Scholar 

  39. Wong WR, Sekaran SD, Adikan FRM, Berini P (2016) Detection of dengue NS1 antigen using long-range surface plasmon waveguides. Biosens Bioelectron 78:132–139

    CAS  PubMed  Google Scholar 

  40. Jahanshahi P, Sekaran SD, Adikan FRM (2015) Optical and analytical investigations on dengue virus rapid diagnostic test for IgM antibody detection. Med Biol Eng Comput 53:679–687

    PubMed  Google Scholar 

  41. Fletcher SJ, Phillips LW, Milligan AS, Rodda SJ (2010) Toward specific detection of dengue virus serotypes using a novel modular biosensor. Biosens Bioelectron 26:1696–1700

    CAS  PubMed  Google Scholar 

  42. Chan S, Choong Y, Perera D, Lim T (2018) Dengue serotyping with a label-free DNA sensor. Anal Methods 10:214–222

    CAS  Google Scholar 

  43. Shen W, Gao Z (2015) Quantum dots and duplex-specific nuclease enabled ultrasensitive detection and serotyping of dengue viruses in one step in a single tube. Biosens Bioelectron 65:327–332

    CAS  PubMed  Google Scholar 

  44. Dutta Chowdhury A, Ganganboina AB, Nasrin F, Takemura K, Doong R-a, Utomo DIS et al (2018) Femtomolar detection of dengue virus DNA with serotype identification ability. Anal Chem 90:12464–12474

    CAS  PubMed  Google Scholar 

  45. Hsieh M-S, Chen M-Y, Hsieh C-H, Pan C-H, Yu G-Y, Chen H-W (2017) Detection and quantification of dengue virus using a novel biosensor system based on dengue NS3 protease activity. PLoS One 12:e0188170

    PubMed  PubMed Central  Google Scholar 

  46. Xie B-P, Qiu G-H, Hu P-P, Liang Z, Liang Y-M, Sun B et al (2018) Simultaneous detection of dengue and Zika virus RNA sequences with a three-dimensional cu-based zwitterionic metal–organic framework, comparison of single and synchronous fluorescence analysis. Sensors Actuators B Chem 254:1133–1140

    CAS  Google Scholar 

  47. Asokanathan C, Tierney S, Ball CR, Buckle G, Day A, Tanley S et al (2018) An ELISA method to estimate the mono ADP-ribosyltransferase activities: eg in pertussis toxin and vaccines. Anal Biochem 540:15–19

    PubMed  Google Scholar 

  48. Alamdari DH, Kostidou E, Paletas K, Sarigianni M, Konstas AG, Karapiperidou A et al (2005) High sensitivity enzyme-linked immunosorbent assay (ELISA) method for measuring protein carbonyl in samples with low amounts of protein. Free Radic Biol Med 39:1362–1367

    CAS  PubMed  Google Scholar 

  49. Kim A, Li C-R, Jin C-F, Lee KW, Lee S-H, Shon K-J et al (2007) A sensitive and reliable quantification method for bisphenol a based on modified competitive ELISA method. Chemosphere 68:1204–1209

    CAS  PubMed  Google Scholar 

  50. Thiha A, Ibrahim F (2015) A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors 15:11431–11441

    CAS  PubMed  Google Scholar 

  51. Hosseini S, Ibrahim F, Djordjevic I, Rothan HA, Yusof R, van der Marel C et al (2014) Synthesis and characterization of methacrylic microspheres for biomolecular recognition: ultrasensitive biosensor for dengue virus detection. Eur Polym J 60:14–21

    CAS  Google Scholar 

  52. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R et al (2015) Polymethacrylate coated electrospun PHB fibers: an exquisite outlook for fabrication of paper-based biosensors. Biosens Bioelectron 69:257–264

    CAS  PubMed  Google Scholar 

  53. Farahmand E, Ibrahim F, Hosseini S, Rothan HA, Yusof R, Koole LH et al (2015) A novel approach for application of nylon membranes in the biosensing domain. Appl Surf Sci 353:1310–1319

    CAS  Google Scholar 

  54. Hosseini S, Azari P, Aeinehvand MM, Rothan HA, Djordjevic I, Martinez-Chapa SO et al (2016) Intrant ELISA: a novel approach to fabrication of electrospun fiber mat-assisted biosensor platforms and their integration within standard analytical well plates. Appl Sci 6:336

    Google Scholar 

  55. Ortega G, Pérez-Rodríguez S, Reguera E (2017) Magnetic paper–based ELISA for IgM-dengue detection. RSC Adv 7:4921–4932

    CAS  Google Scholar 

  56. Kim S, Bang J, Park H, Choi WI, Sung D-K, Lee JH et al (2018) Sensitive detection of dengue virus NS1 by highly stable affibody-functionalized gold nanoparticles. New J Chem 42:12607–12614

    Google Scholar 

  57. Sasmono RT, Aryati A, Wardhani P, Yohan B, Trimarsanto H, Fahri S et al (2014) Performance of Simplexa dengue molecular assay compared to conventional and SYBR green RT-PCR for detection of dengue infection in Indonesia. PLoS One 9:e103815

    PubMed  PubMed Central  Google Scholar 

  58. Lopez-Jimena B, Bekaert M, Bakheit M, Frischmann S, Patel P, Simon-Loriere E et al (2018) Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype. PLoS Negl Trop Dis 12:e0006381

    PubMed  PubMed Central  Google Scholar 

  59. Teoh B-T, Sam S-S, Tan K-K, Danlami MB, Shu M-H, Johari J et al (2015) Early detection of the dengue virus using reverse transcription-recombinase polymerase amplification. J Clin Microbiol 53:830–837

    PubMed  PubMed Central  Google Scholar 

  60. Vinayagam S, Rajaiah P, Mukherjee A, Natarajan C (2018) DNA-triangular silver nanoparticles nanoprobe for the detection of dengue virus distinguishing serotype. Spectrochim Acta A Mol Biomol Spectrosc 202:346–351

    CAS  PubMed  Google Scholar 

  61. Adegoke O, Park EY (2017) Bright luminescent optically engineered core/alloyed shell quantum dots: an ultrasensitive signal transducer for dengue virus RNA via localized surface plasmon resonance-induced hairpin hybridization. J Mater Chem B 5:3047–3058

    CAS  Google Scholar 

  62. Mazlan N-F, Tan LL, Karim NHA, Heng LY, Reza MIH (2017) Optical biosensing using newly synthesized metal salphen complexes: a potential DNA diagnostic tool. Sensors Actuators B Chem 242:176–188

    CAS  Google Scholar 

  63. Loureiro FC, Neff H, Melcher EU, Roque RA, de Figueiredo RM, Thirstrup C et al (2017) Simplified immunoassay for rapid dengue serotype diagnosis, revealing insensitivity to non-specific binding interference. Sens Biosensing Res 13:96–103

    Google Scholar 

  64. Wong WR (2015) Long range surface plasmon based biosensor for dengue virus detection/Wong Wei Ru: University of Malaya

  65. Camara AR, Gouvêa PM, Dias ACM, Braga AM, Dutra RF, de Araujo RE et al (2013) Dengue immunoassay with an LSPR fiber optic sensor. Opt Express 21:27023–27031

    PubMed  Google Scholar 

  66. Hasanzadeh M, Karimzadeh A, Sadeghi S, Mokhtarzadeh A, Shadjou N, Jouyban A (2016) Graphene quantum dot as an electrically conductive material toward low potential detection: a new platform for interface science. J Mater Sci-Mater El 27:6488–6495

    CAS  Google Scholar 

  67. Hasanzadeh M, Baghban HN, Shadjou N, Mokhtarzadeh A (2018) Ultrasensitive electrochemical immunosensing of tumor suppressor protein p53 in unprocessed human plasma and cell lysates using a novel nanocomposite based on poly-cysteine/graphene quantum dots/gold nanoparticle. Int J Biol Macromol 107:1348–1363

    CAS  PubMed  Google Scholar 

  68. Hekmat F, Shahrokhian S, Taghavinia N (2018) Ultralight flexible asymmetric supercapacitors based on manganese dioxide–polyaniline nanocomposite and reduced graphene oxide electrodes directly deposited on foldable cellulose papers. J Phys Chem C 122:27156–27168

    CAS  Google Scholar 

  69. Kakaei K, Alidoust E, Ghadimi G (2018) Synthesis of N-doped graphene nanosheets and its composite with urea choline chloride ionic liquid as a novel electrode for supercapacitor. J Alloys Compd 735:1799–1806

    CAS  Google Scholar 

  70. Karimi Z, Shamsipur M, Tabrizi MA, Rostamnia S (2018) A highly sensitive electrochemical sensor for the determination of methanol based on PdNPs@ SBA-15-PrEn modified electrode. Anal Biochem 548:32–37

    CAS  PubMed  Google Scholar 

  71. Shamsipur M, Karimi Z, Tabrizi MA, Rostamnia S (2017) Highly sensitive non-enzymatic electrochemical glucose sensor by Nafion/SBA-15-cu (II) modified glassy carbon electrode. J Electroanal Chem 799:406–412

    CAS  Google Scholar 

  72. Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2:15428–15436

    CAS  Google Scholar 

  73. Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, de la Guardia M, Mokhtarzadeh A (2017) Recent advances in nanomaterial-mediated bio and immune sensors for detection of aflatoxin in food products. Trends Anal Chem 87:112–128

    CAS  Google Scholar 

  74. Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, Maleki A, Hejazi M, Mokhtarzadeh A et al (2018) Recent advances on nanomaterial based electrochemical and optical aptasesnors for detection of cancer biomarkers. Trends Anal Chem 100:103–115

    CAS  Google Scholar 

  75. Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M et al (2017) Nanomaterial-based biosensors for detection of pathogenic virus. Trends Anal Chem 97:445–457

    CAS  Google Scholar 

  76. Hasanzadeh M, Baghban HN, Mokhtarzadeh A, Shadjou N, Mahboob S (2017) An innovative immunosensor for detection of tumor suppressor protein p53 in unprocessed human plasma and cancer cell lysates. Int J Biol Macromol 105:1337–1348

    CAS  PubMed  Google Scholar 

  77. Hassanpour S, Baradaran B, Hejazi M, Hasanzadeh M, Mokhtarzadeh A, de la Guardia M (2018) Recent trends in rapid detection of influenza infections by bio and nanobiosensor. Trends Anal Chem 98:201–215

    CAS  Google Scholar 

  78. Rashid JIA, Yusof NA, Abdullah J, Hashim U, Hajian R (2016) Surface modifications to boost sensitivities of electrochemical biosensors using gold nanoparticles/silicon nanowires and response surface methodology approach. J Mater Sci 51:1083–1097

    Google Scholar 

  79. Tripathy S, Vanjari SRK, Singh V, Swaminathan S, Singh SG (2017) Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer. Biosens Bioelectron 90:378–387

    CAS  PubMed  Google Scholar 

  80. Singhal C, Pundir C, Narang J (2017) A genosensor for detection of consensus DNA sequence of dengue virus using ZnO/Pt-Pd nanocomposites. Biosens Bioelectron 97:75–82

    CAS  PubMed  Google Scholar 

  81. Rashid JIA, Yusof NA, Abdullah J, Hashim U, Hajian R (2014) The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor. Mater Sci Eng C 45:270–276

    CAS  Google Scholar 

  82. Oliveira MD, Nogueira ML, Correia MT, Coelho LC, Andrade CA (2011) Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sensors Actuators B Chem 155:789–795

    CAS  Google Scholar 

  83. Dias ACM, Gomes-Filho SL, Silva MM, Dutra RF (2013) A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein. Biosens Bioelectron 44:216–221

    CAS  PubMed  Google Scholar 

  84. Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges, Electroynalysis (N.Y.N.Y.), 19:1239-57

  85. Bao N, Wang J, Lu C (2008) Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 391:933–942

    CAS  PubMed  Google Scholar 

  86. Tung Y-T, Wu M-F, Wang G-J, Hsieh S-L (2014) Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the CLEC5A receptor. Nanomedicine 10:1335–1341

    CAS  PubMed  Google Scholar 

  87. Allonso D, da Silva RM, Coelho DR, da Costa SM, Nogueira RMR, Bozza FA et al (2011) Polyclonal antibodies against properly folded dengue virus NS1 protein expressed in E. coli enable sensitive and early dengue diagnosis. J Virol Methods 175:109–116

    CAS  PubMed  Google Scholar 

  88. Cecchetto J, Carvalho FC, Santos A, Fernandes FC, Bueno PR (2015) An impedimetric biosensor to test neat serum for dengue diagnosis. Sensors Actuators B Chem 213:150–154

    CAS  Google Scholar 

  89. Luna DM, Avelino KY, Cordeiro MT, Andrade CA, Oliveira MD (2015) Electrochemical immunosensor for dengue virus serotypes based on 4-mercaptobenzoic acid modified gold nanoparticles on self-assembled cysteine monolayers. Sensors Actuators B Chem 220:565–572

    CAS  Google Scholar 

  90. Nascimento HP, Oliveira MD, de Melo CP, Silva GJ, Cordeiro MT, Andrade CA (2011) An impedimetric biosensor for detection of dengue serotype at picomolar concentration based on gold nanoparticles-polyaniline hybrid composites. Colloids Surf B: Biointerfaces 86:414–419

    CAS  PubMed  Google Scholar 

  91. Navakul K, Warakulwit C, Yenchitsomanus P-t, Panya A, Lieberzeit PA, Sangma C (2017) A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomedicine 13:549–557

    CAS  PubMed  Google Scholar 

  92. Avelino K, Andrade C, De Melo C, Nogueira M, Correia M, Coelho L et al (2014) Biosensor based on hybrid nanocomposite and CramoLL lectin for detection of dengue glycoproteins in real samples. Synth Met 194:102–108

    CAS  Google Scholar 

  93. Darwish NT, Alrawi AH, Sekaran SD, Alias Y, Khor SM (2016) Electrochemical immunosensor based on antibody-nanoparticle hybrid for specific detection of the dengue virus NS1 biomarker. J Electrochem Soc 163:B19–B25

    CAS  Google Scholar 

  94. Solanki S, Soni A, Pandey MK, Biradar A, Sumana G (2018) Langmuir–Blodgett Nanoassemblies of the MoS2–au composite at the air–water Interface for dengue detection. ACS Appl Mater Interfaces 10:3020–3028

    CAS  PubMed  Google Scholar 

  95. Sinawang PD, Rai V, Ionescu RE, Marks RS (2016) Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron 77:400–408

    CAS  PubMed  Google Scholar 

  96. Sinawang PD, Fajs L, Elouarzaki K, Nugraha J, Marks RS (2018) TEMPO-based immuno-lateral flow quantitative detection of dengue NS1 protein. Sensors Actuators B Chem 259:354–363

    CAS  Google Scholar 

  97. Wasik D, Mulchandani A, Yates M (2018) Salivary detection of dengue virus NS1 protein with a label-free Immunosensor for early dengue diagnosis. Sensors 18:2641

    Google Scholar 

  98. Senapati S, Slouka Z, Shah SS, Behura SK, Shi Z, Stack MS et al (2014) An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens Bioelectron 60:92–100

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ho JS, Toh C-S (2013) A rapid low power ultra-violet Light-assisted bacterial sensor for coliform determination. Am J Anal Chem 4:1–8

    Google Scholar 

  100. Oliveira MD, Correia MT, Diniz FB (2009) Concanavalin a and polyvinyl butyral use as a potential dengue electrochemical biosensor. Biosens Bioelectron 25:728–732

    CAS  PubMed  Google Scholar 

  101. Andrade CA, Oliveira MD, De Melo CP, Coelho LC, Correia MT, Nogueira ML et al (2011) Diagnosis of dengue infection using a modified gold electrode with hybrid organic–inorganic nanocomposite and Bauhinia monandra lectin. J Colloid Interface Sci 362:517–523

    CAS  PubMed  Google Scholar 

  102. Rashid JIA, Yusof NA, Abdullah J, Hashim U, Hajian R (2015) A novel disposable biosensor based on SINWs/AUNPs modified-screen printed electrode for dengue virus DNA oligomer detection. IEEE Sensors J 15:4420–4427

    Google Scholar 

  103. Rai V, Hapuarachchi HC, Ng LC, Soh SH, Leo YS, Toh C-S (2012) Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor. PLoS One 7:e42346

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ribeiro Teles FR, França dos Prazeres DM, de Lima-Filho JL (2007) Electrochemical detection of a dengue-related oligonucleotide sequence using ferrocenium as a hybridization indicator. Sensors 7:2510–2518

    PubMed  Google Scholar 

  105. Stefan-van Staden R-I, Moldoveanu I (2014) Stochastic microsensors based on nanostructured materials used in the screening of whole blood for hepatitis B. J Electrochem Soc 161:B3001–B30B5

    CAS  Google Scholar 

  106. Oliveira N, Souza E, Ferreira D, Zanforlin D, Bezerra W, Borba MA et al (2015) A sensitive and selective label-free electrochemical DNA biosensor for the detection of specific dengue virus serotype 3 sequences. Sensors 15:15562–15577

    CAS  PubMed  Google Scholar 

  107. Odeh AA, Al-Douri Y, Voon C, Ayub RM, Gopinath SC, Odeh RA et al (2017) A needle-like Cu2CdSnS4 alloy nanostructure-based integrated electrochemical biosensor for detecting the DNA of dengue serotype 2. Microchim Acta 184:2211–2218

    Google Scholar 

  108. Jin S-A, Poudyal S, Marinero EE, Kuhn RJ, Stanciu LA (2016) Impedimetric dengue biosensor based on functionalized graphene oxide wrapped silica particles. Electrochim Acta 194:422–430

    CAS  Google Scholar 

  109. Huang MJ, Xie H, Wan Q, Zhang L, Ning Y, Zhang G-J (2013) Serotype-specific identification of dengue virus by silicon nanowire array biosensor. J Nanosci Nanotechnol 13:3810–3817

    CAS  PubMed  Google Scholar 

  110. Deng J, Toh C-S (2013) Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus. Sensors 13:7774–7785

    CAS  PubMed  Google Scholar 

  111. Nguyen BTT, Peh AEK, Chee CYL, Fink K, Chow VT, Ng MM et al (2012) Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor. Bioelectrochemistry 88:15–21

    CAS  PubMed  Google Scholar 

  112. Luna DM, Oliveira MD, Nogueira ML, Andrade CA (2014) Biosensor based on lectin and lipid membranes for detection of serum glycoproteins in infected patients with dengue. Chem Phys Lipids 180:7–14

    CAS  PubMed  Google Scholar 

  113. Oliveira MD, Correia MT, Diniz FB (2009) A novel approach to classify serum glycoproteins from patients infected by dengue using electrochemical impedance spectroscopy analysis. Synth Met 159:2162–2164

    CAS  Google Scholar 

  114. Zhang G-J, Agarwal A, Buddharaju KD, Singh N, Gao Z (2007) Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires. Appl Phys Lett 90:233903

    Google Scholar 

  115. Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD et al (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nat 445:519–522

    CAS  Google Scholar 

  116. Bunimovich YL, Shin YS, Yeo W-S, Amori M, Kwong G, Heath JR (2006) Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 128:16323–16331

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chartuprayoon N, Zhang M, Bosze W, Choa Y-H, Myung NV (2015) One-dimensional nanostructures based bio-detection. Biosens Bioelectron 63:432–443

    CAS  PubMed  Google Scholar 

  118. Wasik D, Mulchandani A, Yates MV (2017) A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosens Bioelectron 91:811–816

    CAS  PubMed  Google Scholar 

  119. Zhang G-J, Zhang L, Huang MJ, Luo ZHH, Tay GKI, Lim E-JA et al (2010) Silicon nanowire biosensor for highly sensitive and rapid detection of dengue virus. Sensors Actuators B Chem 146:138–144

    CAS  Google Scholar 

  120. Wasik D, Mulchandani A, Yates MV (2017) Point-of-use Nanobiosensor for detection of dengue virus NS1 antigen in adult Aedes aegypti: a potential tool for improved dengue surveillance. Anal Chem 90:679–684

    PubMed  Google Scholar 

  121. Chen S-H, Chuang Y-C, Lu Y-C, Lin H-C, Yang Y-L, Lin C-S (2009) A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology 20:215501

    PubMed  Google Scholar 

  122. Parkash O, Shueb R (2015) Diagnosis of dengue infection using conventional and biosensor based techniques. Viruses 7:5410–5427

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zainuddin AA, Nordin AN, Ab Rahim R (2018) Recent trends in dengue detection methods using biosensors. IIUM Eng J 19:134–153

    Google Scholar 

  124. Sri S, Dhand C, Rathee J, Ramakrishna S, Solanki PR (2018) Microfluidic based biosensors as point of care devices for infectious diseases management. Sensor Lett 16:1–13

    Google Scholar 

  125. Hosseini S, Aeinehvand MM, Uddin SM, Benzina A, Rothan HA, Yusof R et al (2015) Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection. Sci Rep 5:16485

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kwakye S, Baeumner A (2003) A microfluidic biosensor based on nucleic acid sequence recognition. Anal Bioanal Chem 376:1062–1068

    CAS  PubMed  Google Scholar 

  127. Iswardy E, Tsai T-C, Cheng I-F, Ho T-C, Perng GC, Chang H-C (2017) A bead-based immunofluorescence-assay on a microfluidic dielectrophoresis platform for rapid dengue virus detection. Biosens Bioelectron 95:174–180

    CAS  PubMed  Google Scholar 

  128. Kwakye S, Goral VN, Baeumner AJ (2006) Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat. Biosens Bioelectron 21:2217–2223

    CAS  PubMed  Google Scholar 

  129. Jain J, Okabayashi T, Kaur N, Nakayama E, Shioda T, Gaind R et al (2018) Evaluation of an immunochromatography rapid diagnosis kit for detection of chikungunya virus antigen in India, a dengue-endemic country. Virol J 15:84

    PubMed  PubMed Central  Google Scholar 

  130. Yaren O, Alto BW, Gangodkar PV, Ranade SR, Patil KN, Bradley KM et al (2017) Point of sampling detection of Zika virus within a multiplexed kit capable of detecting dengue and chikungunya. BMC Infect Dis 17:293

    PubMed  PubMed Central  Google Scholar 

  131. Choi JR, Yong KW, Tang R, Gong Y, Wen T, Yang H et al (2017) Lateral flow assay based on paper–hydrogel hybrid material for sensitive point-of-care detection of dengue virus. Adv Healthc Mater 6:1600920

    Google Scholar 

  132. Jusoh M, Akmalina TN, Shueb RH (2017) Performance evaluation of commercial dengue diagnostic tests for early detection of dengue in clinical samples. Journal of Tropical Medicine 2017:4

    Google Scholar 

  133. Tsai J-J, Liu L-T, Lin P-C, Tsai C-Y, Chou P-H, Tsai Y-L et al (2018) Validation of POCKIT™ dengue virus reagent set for rapid detection of dengue virus in human serum on a field-deployable PCR system. J Clin Microbiol 56:01865–01817

    Google Scholar 

  134. Roda A, Michelini E, Zangheri M, Di Fusco M, Calabria D, Simoni P (2016) Smartphone-based biosensors: a critical review and perspectives. Trends Anal Chem 79:317–325

    CAS  Google Scholar 

  135. Ganguli A, Ornob A, Yu H, Damhorst G, Chen W, Sun F et al (2017) Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care. Biomed Microdevices 19:73

    CAS  PubMed  Google Scholar 

  136. Priye A, Bird SW, Light YK, Ball CS, Negrete OA, Meagher RJ (2017) A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep 7:44778

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Giry C, Roquebert B, Li-Pat-Yuen G, Gasque P, Jaffar-Bandjee M-C (2017) Simultaneous detection of chikungunya virus, dengue virus and human pathogenic Leptospira genomes using a multiplex TaqMan® assay. BMC Microbiol 17:105

    PubMed  PubMed Central  Google Scholar 

  138. Mansuy J-M, Lhomme S, Cazabat M, Pasquier C, Martin-Blondel G, Izopet J (2018) Detection of Zika, dengue and chikungunya viruses using single-reaction multiplex real-time RT-PCR. Diagn Microbiol Infect Dis 92:284–287

    CAS  PubMed  Google Scholar 

  139. Waggoner JJ, Gresh L, Mohamed-Hadley A, Ballesteros G, Davila MJV, Tellez Y et al (2016) Single-reaction multiplex reverse transcription PCR for detection of Zika, chikungunya, and dengue viruses. Emerg Infect Dis 22:1295–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Minero GAS, Nogueira C, Rizzi G, Tian B, Fock J, Donolato M et al (2017) Sequence-specific validation of LAMP amplicons in real-time optomagnetic detection of dengue serotype 2 synthetic DNA. Analyst 142:3441–3450

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors are grateful for financial support from the Immunology Research Center, Tabriz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahad Mokhtarzadeh or Ali Maleki.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eivazzadeh-Keihan, R., Pashazadeh-Panahi, P., Mahmoudi, T. et al. Dengue virus: a review on advances in detection and trends – from conventional methods to novel biosensors. Microchim Acta 186, 329 (2019). https://doi.org/10.1007/s00604-019-3420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3420-y

Keywords

Navigation