Skip to main content
Log in

An electrochemical microfluidic biochip for the detection of gliadin using MoS2/graphene/gold nanocomposite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Testing gluten content in food, before it reaches the consumer, becomes a major challenge where cross-contamination during processing and transportation is a very common occurrence. In this study, a microfluidic electrochemical aptasensing system for the detection of gliadin has been proposed. The fabrication of the sensor involves its modification by using a combination of 2D nanomaterial molybdenum disulfide (MoS2)/graphene with the addition of gold (Au) nanoparticles. Aptamers, a short string of nucleotide bases that are very specific to gliadin, were used in this sensor as the biomarker. The electrochemical standard reduction potential of the ferro-ferricyanide indicator was found to be ~ 530 mV. This setup was integrated with a unique polydimethylsiloxane (PDMS)-based flexible microfluidic device for sample enrichment and portability. The results of this sensor show that the limit of detection was 7 pM. The total sample assay time was 20 min and a good linear range was observed from 4 to 250 nM with an R2 value of 0.982. Different flour samples sourced from the local market were tested and interfering molecules were added to ensure selectivity. The study shows promise in its applicability in real-time gliadin detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119. https://doi.org/10.1016/J.FM.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  2. Singh A, Munshi S, Raghavan V et al (2013) Effect of external electric field stress on gliadin protein conformation. Proteomes 1:25–39. https://doi.org/10.3390/proteomes1020025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Inomata N (2009) Wheat allergy. Curr Opin Allergy Clin Immunol 9:238–243. https://doi.org/10.1097/ACI.0b013e32832aa5bc

    Article  CAS  PubMed  Google Scholar 

  4. Leonard MM, Vasagar B (2014) US perspective on gluten-related diseases. Clin Exp Gastroenterol 7:25–37. https://doi.org/10.2147/CEG.S54567

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cianferoni A (2016) Wheat allergy: diagnosis and management. J Asthma Allergy 9:13–25. https://doi.org/10.2147/JAA.S81550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Standards | CODEXALIMENTARIUS FAO-WHO. http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/. Accessed 27 Jun 2019

  7. Kagan RS (2003) Food allergy: an overview. Environ Health Perspect 111:223–225. https://doi.org/10.1289/ehp.5702

    Article  PubMed  PubMed Central  Google Scholar 

  8. Diaz-Amigo C, Popping B (2013) Accuracy of ELISA detection methods for gluten and reference materials: a realistic assessment. J Agric Food Chem 61:5681–5688. https://doi.org/10.1021/jf3046736

    Article  CAS  PubMed  Google Scholar 

  9. Lock S, Lock S (2013) Gluten detection and speciation by liquid chromatography mass spectrometry (LC-MS/MS). Foods 3:13–29. https://doi.org/10.3390/foods3010013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Allmann M, Candrian U, Hefelein C, Lthy J (1993) Polymerase chain reaction (PCR): a possible alternative to immunochemical methods assuring safety and quality of food detection of wheat contamination in non-wheat food products. Zeitschrift fr Leb Forsch 196:248–251. https://doi.org/10.1007/BF01202741

    Article  CAS  Google Scholar 

  11. Weng X, Neethirajan S (2016) A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron 85:649–656. https://doi.org/10.1016/J.BIOS.2016.05.072

    Article  CAS  PubMed  Google Scholar 

  12. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763. https://doi.org/10.1039/b714449k

    Article  CAS  PubMed  Google Scholar 

  13. Alarcon-Angeles G, Álvarez-Romero GA, Merkoçi A (2016) Emerging nanomaterials for analytical detection. Compr Anal Chem 74:195–246. https://doi.org/10.1016/bs.coac.2016.03.022

    Article  CAS  Google Scholar 

  14. Acquah C, Agyei D, Monney I et al (2018) Aptameric sensing in food safety. Elsevier Inc.

  15. Sharma R, Ragavan KV, Thakur MS, Raghavarao KSMS (2015) Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron 74:612–627. https://doi.org/10.1016/j.bios.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  16. Wu YX, Kwon YJ (2016) Aptamers: the “evolution” of SELEX. Methods 106:21–28. https://doi.org/10.1016/J.YMETH.2016.04.020

    Article  CAS  PubMed  Google Scholar 

  17. Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47:4252–4254. https://doi.org/10.1039/c1cc10631g

    Article  CAS  Google Scholar 

  18. Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S (2014) Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 26:2344–2353. https://doi.org/10.1021/cm500347r

    Article  CAS  Google Scholar 

  19. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y 45:1558–1565. https://doi.org/10.1016/J.CARBON.2007.02.034

    Article  CAS  Google Scholar 

  20. Amaya-González S, López-López L, Miranda-Castro R, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ (2015) Affinity of aptamers binding 33-mer gliadin peptide and gluten proteins: influence of immobilization and labeling tags. Anal Chim Acta 873:63–70. https://doi.org/10.1016/J.ACA.2015.02.053

    Article  PubMed  Google Scholar 

  21. Liu H, Chen X, Deng L, Su X, Guo K, Zhu Z (2016) Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 206:184–191. https://doi.org/10.1016/j.electacta.2016.04.160

    Article  CAS  Google Scholar 

  22. Xie X, Ao Z, Su D, Zhang J, Wang G (2015) MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Funct Mater 25:1393–1403. https://doi.org/10.1002/adfm.201404078

    Article  CAS  Google Scholar 

  23. David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770. https://doi.org/10.1021/nn406156b

    Article  CAS  PubMed  Google Scholar 

  24. Wang K, Wang J, Fan J, et al (2013) Ultrafast saturable absorption of two-dimensional MoS 2 nanosheets. https://doi.org/10.1021/nn403886t

  25. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  26. Ji X, Song X, Li J, et al (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. https://doi.org/10.1021/ja074447k

  27. Yu X, Shiraki T, Yang S, Ding B, Nakashima N (2015) Synthesis of porous gold nanoparticle/MoS 2 nanocomposites based on redox reactions. RSC Adv 5:86558–86563. https://doi.org/10.1039/C5RA15421A

    Article  CAS  Google Scholar 

  28. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. https://doi.org/10.1038/nchem.1589

    Article  PubMed  Google Scholar 

  29. Kudin KN, Ozbas B, Schniepp HC et al (2007) Raman spectra of graphite oxide and functionalized graphene sheets. NanoLetters 8:36–41. https://doi.org/10.1021/NL071822Y

    Article  Google Scholar 

  30. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195. https://doi.org/10.1021/jp710931h

    Article  CAS  Google Scholar 

Download references

Funding

The authors sincerely thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding this study (Grant # RGPIN-2017-03975). The authors would also like to acknowledge the OMAFRA-U of G Partnership (Ontario Ministry of Agriculture, Food and Rural Affairs) for funding this study through their Highly Qualified Personnel (HQP) Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, S., Elsayed, A. & Singh, A. An electrochemical microfluidic biochip for the detection of gliadin using MoS2/graphene/gold nanocomposite. Microchim Acta 187, 645 (2020). https://doi.org/10.1007/s00604-020-04589-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04589-w

Keywords

Navigation