Skip to main content
Log in

A 433-MHz surface acoustic wave sensor with Ni-TiO2-poly(L-lysine) composite film for dopamine determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ternary hybrid material composed of Ni nanoparticles (NPs), TiO2 NPs, and poly(L-lysine) (Ply) was used as a sensing material. It was electrodeposited in situ onto a commercial 433-MHz surface acoustic wave (SAW) resonator to construct a Ni-TiO2-Ply/SAW sensor. The Ni-TiO2-Ply sensing layer fully covered the resonant cavity of the SAW resonator. As the sensing layer completely covers the interdigital transducer and piezoelectric substrate, the sensing area is significantly increased, and the resonator is protected from damage or contamination. To detect the level of dopamine (DA) in serum, the fabrication of the Ni-TiO2-Ply sensing layer, distributions of various components in the sensing layer, and responses of the SAW biosensor to DA were investigated in detail. In addition, an electric field-assisted liquid-phase oxidation technique was developed for loading analytes onto the SAW sensors. After optimizing the pH value and L-lysine content of the sensing layer electrolyte and the pH value of the DA solution, the SAW biosensor responded to DA with a linear concentration range of 1 to 1000 nM, sensitivity of 5.77 MHz nM−1 cm−2, and limit of detection of 0.067 nM. Moreover, the sensor exhibited good selectivity, reproducibility, and stability at ambient temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apostolou T, Moschopoulou G, Kolotourou E, Kintzios S (2017) Assessment of in vitro dopamine-neuroblastoma cell interactions with a bioelectric biosensor: perspective for a novel in vitro functional assay for dopamine agonist/antagonist activity. Talanta 170:69–73. https://doi.org/10.1016/j.talanta.2017.03.098

    Article  CAS  PubMed  Google Scholar 

  2. Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT (2017) Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens Bioelectron 89(Part 1):400–410. https://doi.org/10.1016/j.bios.2016.05.084

    Article  CAS  PubMed  Google Scholar 

  3. Vilian ATE, An S, Choe SR, Kwak CH, Huh YS, Lee J, Han Y-K (2016) Fabrication of 3D honeycomb-like porous polyurethane-functionalized reduced graphene oxide for detection of dopamine. Biosens Bioelectron 86:122–128. https://doi.org/10.1016/j.bios.2016.06.022

    Article  CAS  PubMed  Google Scholar 

  4. Zhao L, Li H, Gao S, Li M, Xu S, Li C, Guo W, Qu C, Yang B (2015) MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta 168(0):191–198. https://doi.org/10.1016/j.electacta.2015.03.215

    Article  CAS  Google Scholar 

  5. Diaz-Diestra D, Thapa B, Beltran-Huarac J, Weiner BR, Morell G (2017) L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron 87:693–700. https://doi.org/10.1016/j.bios.2016.09.022

    Article  CAS  PubMed  Google Scholar 

  6. Fu X, Tan X, Yuan R, Chen S (2017) A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Biosens Bioelectron 90:61–68. https://doi.org/10.1016/j.bios.2016.11.025

    Article  CAS  PubMed  Google Scholar 

  7. Xu Y, Wang J, Lu Y, Dai X, Yan Y (2019) Preparation of functionalized double ratio fluorescent imprinted sensors for visual determination and recognition of dopamine in human serum. Spectrochim Acta A 219:225–231. https://doi.org/10.1016/j.saa.2019.04.035

    Article  CAS  Google Scholar 

  8. Diab N, Morales DM, Andronescu C, Masoud M, Schuhmann W (2019) A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine. Sensors Actuators B Chem 285:17–23. https://doi.org/10.1016/j.snb.2019.01.022

    Article  CAS  Google Scholar 

  9. Tang Y, Xu X, Han S, Cai C, Du H, Zhu H, Zu X, Fu Y (2020) ZnO-Al2O3 nanocomposite as a sensitive layer for high performance surface acoustic wave H2S gas sensor with enhanced elastic loading effect. Sensors Actuators B Chem 304:127395. https://doi.org/10.1016/j.snb.2019.127395

    Article  CAS  Google Scholar 

  10. Mujahid A, Afzal A, Dickert FL (2019) An overview of high frequency acoustic sensors-QCMs, SAWs and FBARs-chemical and biochemical applications. Sensors 19(20):4395. https://doi.org/10.3390/s19204395

    Article  CAS  Google Scholar 

  11. Oliveira GCM, Carvalho JHS, Brazaca LC, Vieira NCS, Janegitz BC (2020) Flexible platinum electrodes as electrochemical sensor and immunosensor for Parkinson’s disease biomarkers. Biosens Bioelectron 152:112016. https://doi.org/10.1016/j.bios.2020.112016

    Article  CAS  PubMed  Google Scholar 

  12. Ji J, Pang Y, Li D, Wang X, Xu Y, Mu X (2020) Single-layered graphene/Au-nanoparticles-based love wave biosensor for highly sensitive and specific detection of Staphylococcus aureus gene sequences. ACS Appl Mater Interfaces 12(11):12417–12425. https://doi.org/10.1021/acsami.9b20639

    Article  CAS  PubMed  Google Scholar 

  13. Ji J, Yang C, Zhang F, Shang Z, Xu Y, Chen Y, Chen M, Mu X (2019) A high sensitive SH-SAW biosensor based 36° Y-X black LiTaO3 for label-free detection of Pseudomonas aeruginosa. Sensors Actuators B Chem 281:757–764. https://doi.org/10.1016/j.snb.2018.10.128

    Article  CAS  Google Scholar 

  14. Xu Z, Yuan YJ (2018) Implementation of guiding layers of surface acoustic wave devices: a review. Biosens Bioelectron 99:500–512. https://doi.org/10.1016/j.bios.2017.07.060

    Article  CAS  PubMed  Google Scholar 

  15. Fourati N, Seydou M, Zerrouki C, Singh A, Samanta S, Maurel F, Aswav DK, Chehimi M (2014) Ultrasensitive and selective detection of dopamine using cobalt-phihalocyanine nanopillar-based surface acoustic wave sensor. ACS Appl Mater Interfaces 6(24):22378–22386. https://doi.org/10.1021/am506403f

    Article  CAS  PubMed  Google Scholar 

  16. Jandas PJ, Luo J, Prabakaran K, Chen F, Fu YQ (2020) Highly stable, love-mode surface acoustic wave biosensor using Au nanoparticle-MoS2-rGO nano-cluster doped polyimide nanocomposite for the selective detection of carcinoembryonic antigen. Mater Chem Phys 246:122800. https://doi.org/10.1016/j.matchemphys.2020.122800

    Article  CAS  Google Scholar 

  17. Lei S, Deng C, Chen YQ, Li Y (2011) A novel serial high frequency surface acoustic wave humidity sensor. Sensors Actuators A Phys 167(2):231–236. https://doi.org/10.1016/j.sna.2011.01.020

    Article  CAS  Google Scholar 

  18. Luo J, Luo P, Xie M, Du K, Zhao B, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G (2013) A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosens Bioelectron 49:512–518. https://doi.org/10.1016/j.bios.2013.05.021

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Wang C, Jin D, Yu Y, Yang F, Zhang Y, Yao Q, Zhang G-J (2020) AuNP-amplified surface acoustic wave sensor for the quantification of exosomes. ACS Sens 5(2):362–369. https://doi.org/10.1021/acssensors.9b01869

    Article  CAS  PubMed  Google Scholar 

  20. Šetka M, Bahos FA, Matatagui D, Potoček M, Kral Z, Drbohlavová J, Gràcia I, Vallejos S (2020) Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. Sensors Actuators B Chem 304:127337. https://doi.org/10.1016/j.snb.2019.127337

    Article  CAS  Google Scholar 

  21. Afzal A, Iqbal N, Mujahid A, Schirhagl R (2013) Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review. Anal Chim Acta 787:36–49. https://doi.org/10.1016/j.aca.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  22. Xu S, Li C, Li H, Li M, Qu C, Yang B (2015) Carbon dioxide sensors based on a surface acoustic wave device with a graphene–nickel–l-alanine multilayer film. J Mater Chem C 3(16):3882–3890. https://doi.org/10.1039/c4tc02986k

    Article  CAS  Google Scholar 

  23. Kamal Eddin FB, Wing Fen Y (2020) Recent advances in electrochemical and optical sensing of dopamine. Sensors (Basel) 20(4):1039. https://doi.org/10.3390/s20041039

    Article  CAS  PubMed Central  Google Scholar 

  24. Taniselass S, Arshad MKM, Gopinath SCB (2019) Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 130:276–292. https://doi.org/10.1016/j.bios.2019.01.047

    Article  CAS  PubMed  Google Scholar 

  25. Maouche N, Ktari N, Bakas I, Fourati N, Zerrouki C, Seydou M, Maurel F, Chehimi MM (2015) A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection. J Mol Recognit 28(11):667–678. https://doi.org/10.1002/jmr.2482

    Article  CAS  PubMed  Google Scholar 

  26. Kim S, G-h M, Kim G, Kang U, Park H, Choi W (2017) TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants. J Catal 346:92–100. https://doi.org/10.1016/j.jcat.2016.11.027

    Article  CAS  Google Scholar 

  27. Farajikhah S, Innis PC, Paull B, Wallace GG, Harris AR (2019) Facile development of a fiber-based electrode for highly selective and sensitive detection of dopamine. ACS Sens 4(10):2599–2604. https://doi.org/10.1021/acssensors.9b01583

    Article  CAS  PubMed  Google Scholar 

  28. Khamrai M, Banerjee SL, Paul S, Ghosh AK, Sarkar P, Kundu PP (2019) A mussel mimetic, bioadhesive, antimicrobial patch based on dopamine-modified bacterial cellulose/rGO/Ag NPs: a green approach toward wound-healing applications. ACS Sustain Chem Eng 7(14):12083–12097. https://doi.org/10.1021/acssuschemeng.9b01163

    Article  CAS  Google Scholar 

  29. Liu T, Liu Y, Chen Y, Liu S, Maitz MF, Wang X, Zhang K, Wang J, Wang Y, Chen J, Huang N (2014) Immobilization of heparin/poly-l-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomater 10(5):1940–1954. https://doi.org/10.1016/j.actbio.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  30. Wang JL, Li BC, Li ZJ, Ren KF, Jin LJ, Zhang SM, Chang H, Sun YX, Ji J (2014) Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials 35(27):7679–7689. https://doi.org/10.1016/j.biomaterials.2014.05.047

    Article  CAS  PubMed  Google Scholar 

  31. Cai JS, Huang JY, Ge MZ, Iocozzia J, Lin ZQ, Zhang KQ, Lai YK (2017) Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small 13(19):1604240. https://doi.org/10.1002/smll.201604240

    Article  CAS  Google Scholar 

  32. Loget G, Wood JB, Cho K, Halpern AR, Corn RM (2013) Electrodeposition of polydopamine thin films for DNA patterning and microarrays. Anal Chem 85(21):9991–9995. https://doi.org/10.1021/ac4022743

    Article  CAS  PubMed  Google Scholar 

  33. Dugandžić IM, Jovanović DJ, Mančić LT, Milošević OB, Ahrenkiel SP, Šaponjić ZV, Nedeljković JM (2013) Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine. Mater Chem Phys 143(1):233–239. https://doi.org/10.1016/j.matchemphys.2013.08.058

    Article  CAS  Google Scholar 

  34. Keerthi M, Boopathy G, Chen SM, Chen TW, Lou BS (2019) A core-shell molybdenum nanoparticles entrapped f-MWCNTs hybrid nanostructured material based non-enzymatic biosensor for electrochemical detection of dopamine neurotransmitter in biological samples. Sci Rep 9(1):13075. https://doi.org/10.1038/s41598-019-48999-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deepika J, Sha R, Badhulika S (2019) A ruthenium(IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Microchim Acta 186(7):480. https://doi.org/10.1007/s00604-019-3622-3

    Article  CAS  Google Scholar 

  36. Jana J, Chung JS, Hur SH (2019) ZnO-associated carbon dot-based fluorescent assay for sensitive and selective dopamine detection. Acs Omega 4(16):17031–17038. https://doi.org/10.1021/acsomega.9b02637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaiendoo K, Ittisanronnachai S, Promarak V, Ngeontae W (2019) Polydopamine-coated carbon nanodots are a highly selective turn-on fluorescent probe for dopamine. Carbon 146:728–735. https://doi.org/10.1016/j.carbon.2019.02.030

    Article  CAS  Google Scholar 

  38. Ghosh S, Bhamore JR, Malek NI, Murthy ZVP, Kailasa SK (2019) Trypsin mediated one-pot reaction for the synthesis of red fluorescent gold nanoclusters: sensing of multiple analytes (carbidopa, dopamine, Cu2+, Co2+ and Hg2+ ions). Spectrochim Acta A 215:209–217. https://doi.org/10.1016/j.saa.2019.02.078

    Article  CAS  Google Scholar 

  39. Gu Y, Wang J, Shi H, Pan M, Liu B, Fang G, Wang S (2019) Electrochemiluminescence sensor based on upconversion nanoparticles and oligoaniline-crosslinked gold nanoparticles imprinting recognition sites for the determination of dopamine. Biosens Bioelectron 128:129–136. https://doi.org/10.1016/j.bios.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  40. Chen FN, Zhang YX, Zhang ZJ (2007) Simultaneous determination of epinephrine, noradrenaline and dopamine in human serum samples by high performance liquid chromatography with chemiluminescence detection. Chin J Chem 25(7):942–946. https://doi.org/10.1002/cjoc.200790183

    Article  CAS  Google Scholar 

  41. Moriarty M, Lee A, O'Connell B, Lehane M, Keeley H, Furey A (2012) The application and validation of HybridSPE-precipitation cartridge technology for the rapid clean-up of serum matrices (from phospholipids) for the clinical analysis of serotonin, dopamine and melatonin. Chromatographia 75(21–22):1257–1269. https://doi.org/10.1007/s10337-012-2330-5

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0402700) and the Natural Science Foundation of Tianjin City (Nos. 17JCZDJC32600 and 17JCQNJC00900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingji Li, Hongji Li or Honglang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

The online version of this article contains supplementary material, which is available to authorized users: CV curves; AFM images; and Frequency characteristic curves.

ESM 1

(DOCX 10585 kb)

(MP4 24367kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Li, M., Li, H. et al. A 433-MHz surface acoustic wave sensor with Ni-TiO2-poly(L-lysine) composite film for dopamine determination. Microchim Acta 187, 671 (2020). https://doi.org/10.1007/s00604-020-04635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04635-7

Keywords

Navigation