Skip to main content
Log in

Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The synthesis of novel architecture comprising perylene diimide (PDI)-MXene (Ti3C2TX)-integrated graphitic pencil electrode for electrochemical detection of dopamine (DA) is reported. The good electron passage between PDI-MXene resulted in an unprecedented nano-adduct bearing enhanced electrocatalytic activity with low-energy electronic transitions. The anionic groups of PDI corroborated enhanced active surface area for selective binding and robust oxidation of DA, thereby decreasing the applied potential. Meanwhile, the MXene layers acted as functional conducive support for PDI absorption via strong H-bonding. The considerable conductivity of MXene enhanced electron transportation thus increasing the sensitivity of sensing interface. The inclusively engineered nano-adduct resulted in robust DA oxidation with ultra-sensitivity (38.1 μAμM−1cm−2), and low detection limit (240 nM) at very low oxidation potential (−0.135 V). Moreover, it selectively signaled DA in the presence of physiological interferents with wide linearity (100–1000 μM). The developed transducing interface performed well in human serum samples with RSD (0.1 to 0.4%) and recovery (98.6 to 100.2%) corroborating the viability of the practical implementation of this integrated system.

Schematic illustration of the oxidative process involved on constructed sensing interface for the development of a non-enzymatic dopamine sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu S, Dall’Agnese Y, Wei G, Zhang C, Gogotsi Y, Han W (2018) Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy 50:479–488

    Article  CAS  Google Scholar 

  2. Huang Q, et al. (2020) Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustainable Chemistry & Engineering

    Book  Google Scholar 

  3. Shapiro MG, Westmeyer GG, Romero PA, Szablowski JO, Küster B, Shah A, Otey CR, Langer R, Arnold FH, Jasanoff A (2010) Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol 28(3):264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20(12):1036–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang C-W, Lu MS-C (2011) Electrochemical detection of the neurotransmitter dopamine by nanoimprinted interdigitated electrodes and a CMOS circuit with enhanced collection efficiency. IEEE Sensors J 11(9):1826–1831

    Article  CAS  Google Scholar 

  6. Yang J, Hu Y, Li Y (2019) Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosens Bioelectron 135:224–230

    Article  CAS  PubMed  Google Scholar 

  7. Li R, Liang H, Zhu M, Lai M, Wang S, Zhang H, Ye H, Zhu R, Zhang W (2021) Electrochemical dual signal sensing platform for the simultaneous determination of dopamine, uric acid and glucose based on copper and cerium bimetallic carbon nanocomposites. Bioelectrochemistry 139:107745

    Article  CAS  PubMed  Google Scholar 

  8. Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Inamuddin, Asiri AM, Şen F (2019) Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mater Sci Eng C 99:248–254

    Article  CAS  Google Scholar 

  9. Umapathi S et al (2020) Electrochemical sensor based on CuSe for determination of dopamine. Microchim Acta 187(8):1–13

    Article  CAS  Google Scholar 

  10. Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN (2018) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8(13):1703043

    Article  CAS  Google Scholar 

  11. Wang Z, Xu Z, Huang H, Chu X, Xie Y, Xiong D, Yan C, Zhao H, Zhang H, Yang W (2020) Unraveling and Regulating Self-Discharge Behavior of Ti3C2T x MXene-Based Supercapacitors. ACS Nano 14(4):4916–4924

    Article  CAS  PubMed  Google Scholar 

  12. Chen WY et al (2020) Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun 11(1):1–10

    CAS  Google Scholar 

  13. Chertopalov S, Mochalin VN (2018) Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12(6):6109–6116

    Article  CAS  PubMed  Google Scholar 

  14. Lyu B, Kim M, Jing H, Kang J, Qian C, Lee S, Cho JH (2019) Large-area MXene electrode array for flexible electronics. ACS Nano 13(10):11392–11400

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Ge Y, Huang W, Li Z, Wu L, Zhang H, Li X (2020) Refractive index sensors based on Ti3C2Tx MXene fibers. ACS Applied Nano Materials 3(1):303–311

    Article  CAS  Google Scholar 

  16. Ma Y, Liu N, Li L, Hu X, Zou Z, Wang J, Luo S, Gao Y (2017) A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8(1):1207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Maleski K, Mochalin VN, Gogotsi Y (2017) Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater 29(4):1632–1640

    Article  CAS  Google Scholar 

  18. Enyashin AN, Ivanovskii AL (2013) Structural and electronic properties and stability of MX enes Ti2C and Ti3C2 functionalized by methoxy groups. J Phys Chem C 117(26):13637–13643

    Article  CAS  Google Scholar 

  19. Zhu P, Wang Y, Ma P, Li S, Fan F, Cui K, Ge S, Zhang Y, Yu J (2019) Low-power and high-performance trimethylamine gas sensor based on nn heterojunction microbelts of perylene diimide/CdS. Anal Chem 91(9):5591–5598

    Article  CAS  PubMed  Google Scholar 

  20. Amara U, Mahmood K, Riaz S, Nasir M, Hayat A, Hanif M, Yaqub M, Han D, Niu L, Nawaz MH (2021) Self-assembled perylene-tetracarboxylic acid/multi-walled carbon nanotube adducts based modification of screen-printed interface for efficient enzyme immobilization towards glucose biosensing. Microchem J 165:106109

    Article  CAS  Google Scholar 

  21. Li G, Zhao Y, Li J, Cao J, Zhu J, Sun XW, Zhang Q (2015) Synthesis, characterization, physical properties, and OLED application of single BN-fused perylene diimide. The Journal of organic chemistry 80(1):196–203

    Article  CAS  PubMed  Google Scholar 

  22. Schuster NJ, Paley DW, Jockusch S, Ng F, Steigerwald ML, Nuckolls C (2016) Electron delocalization in perylene diimide helicenes. Angew Chem Int Ed 55(43):13519–13523

    Article  CAS  Google Scholar 

  23. Aulin YV, Felter KM, Günbas DD, Dubey RK, Jager WF, Grozema FC (2018) Morphology-independent efficient singlet exciton fission in perylene diimide thin films. ChemPlusChem 83(4):230–238

    Article  CAS  PubMed  Google Scholar 

  24. Yip AMH, Shum J, Liu HW, Zhou H, Jia M, Niu N, Li Y, Yu C, Lo KKW (2019) Luminescent rhenium (I)–polypyridine complexes appended with a perylene diimide or benzoperylene monoimide moiety: photophysics, intracellular sensing, and photocytotoxic activity. Chem Eur J 25(38):8970–8974

    Article  CAS  PubMed  Google Scholar 

  25. Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fernandez C, Peng Q (2016) Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl Mater Interfaces 8(34):22280–22286

    Article  CAS  PubMed  Google Scholar 

  26. Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud KA, Tkac J (2018) Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors Actuators B Chem 263:360–368

    Article  CAS  Google Scholar 

  27. Riaz S et al (2016) Sonication-induced self-assembly of polymeric porphyrin–fullerene: Formation of nanorings. J Appl Polym Sci:133(24)

  28. Pu J-H, Zhao X, Zha XJ, Li WD, Ke K, Bao RY, Liu ZY, Yang MB, Yang W (2020) A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 74:104814

    Article  CAS  Google Scholar 

  29. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8(32):21011–21019

    Article  CAS  PubMed  Google Scholar 

  30. Ali A et al (2016) Transparent and conductive Ti 3 C 2 T x (MXene) thin film fabrication by electrohydrodynamic atomization technique. J Mater Sci Mater Electron 27(5):5440–5445

    Article  CAS  Google Scholar 

  31. Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu J, Barsoum MW, Gogotsi Y (2014) Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci 111(47):16676–16681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Shi L, Cao Z, Wang R, Sun J (2019) Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle–nanosheet hybrid network. Adv Funct Mater 29(14):1807882

    Article  CAS  Google Scholar 

  33. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT (2018) Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2):986–993

    Article  CAS  PubMed  Google Scholar 

  34. Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud KA, Tkac J (2017) Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim Acta 235:471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li X, Yin X, Han M, Song C, Xu H, Hou Z, Zhang L, Cheng L (2017) Ti 3 C 2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 5(16):4068–4074

    Article  CAS  Google Scholar 

  36. Soundiraraju B, George BK (2017) Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11(9):8892–8900

    Article  CAS  PubMed  Google Scholar 

  37. Zhao H, Zhang YY, Xu H, He EF, Zhang ZL, Peng QM, Zhang RJ, Zhang HQ (2015) Perylene diimide dye/layered carbide charge transfer composite: design, synthesis, and photophysical properties. Mater Lett 161:208–211

    Article  CAS  Google Scholar 

  38. Suram SK, Newhouse PF, Gregoire JM (2016) High throughput light absorber discovery, part 1: an algorithm for automated tauc analysis. ACS Comb Sci 18(11):673–681

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Jiang X, Zhang J, Zhang H, Li Y (2019) Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens Bioelectron 130:315–321

    Article  CAS  PubMed  Google Scholar 

  40. Varol TÖ et al (2019) Fabrication of graphene/azobenzene-perylene diimide derivative modified electrochemical sensors for the dopamine detection based on full factorial experimental design. Measurement 147:106867

    Article  Google Scholar 

  41. Purushothama H, Nayaka YA (2017) Electrochemical study of hydrochlorothiazide on electrochemically pre-treated pencil graphite electrode as a sensor. Sensing and bio-sensing research 16:12–18

    Article  Google Scholar 

  42. Lee S-K, Song MJ, Kim JH, Kan TS, Lim YK, Ahn JP, Lim DS (2014) 3D-networked carbon nanotube/diamond core-shell nanowires for enhanced electrochemical performance. NPG Asia Materials 6(7):e115–e115

    Article  CAS  Google Scholar 

  43. Ejaz A, Joo Y, Jeon S (2017) Fabrication of 1, 4-bis (aminomethyl) benzene and cobalt hydroxide@ graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin. Sensors Actuators B Chem 240:297–307

    Article  CAS  Google Scholar 

  44. Hsu M-S, Chen YL, Lee CY, Chiu HT (2012) Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl Mater Interfaces 4(10):5570–5575

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Jiang J, Xu Z, Liu M, Feng H, Liu Y, Qian D (2017) Synthesis of a nanocomposite consisting of Cu 2 O and N-doped reduced graphene oxide with enhanced electrocatalytic activity for amperometric determination of diethylstilbestrol. Microchim Acta 184(11):4331–4339

    Article  CAS  Google Scholar 

  46. Ning J, He Q, Luo X, Wang M, Liu D, Wang J, Liu J, Li G (2018) Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film. Sensors 18(9):2762

    Article  PubMed Central  CAS  Google Scholar 

  47. He W, Liu R, Zhou P, Liu Q, Cui T (2020) Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosens Bioelectron 167:112473

    Article  CAS  PubMed  Google Scholar 

  48. Mercante LA, Pavinatto A, Iwaki LEO, Scagion VP, Zucolotto V, Oliveira ON Jr, Mattoso LHC, Correa DS (2015) Electrospun polyamide 6/poly (allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interfaces 7(8):4784–4790

    Article  CAS  PubMed  Google Scholar 

  49. Ramachandran R, Leng X, Zhao C, Xu ZX, Wang F (2020) 2D siloxene sheets: A novel electrochemical sensor for selective dopamine detection. Appl Mater Today 18:100477

    Article  Google Scholar 

  50. Reddy S, Swamy BK, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86

    Article  CAS  Google Scholar 

  51. Hobbs CN, Johnson JA, Verber MD, Mark Wightman R (2017) An implantable multimodal sensor for oxygen, neurotransmitters, and electrophysiology during spreading depolarization in the deep brain. Analyst 142(16):2912–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prasad BB, Jauhari D, Tiwari MP (2013) A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens Bioelectron 50:19–27

    Article  CAS  Google Scholar 

  53. Yuan Q, Liu Y, Ye C, Sun H, Dai D, Wei Q, Lai G, Wu T, Yu A, Fu L, Chee KWA, Lin CT (2018) Highly stable and regenerative graphene–diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens Bioelectron 111:117–123

    Article  CAS  PubMed  Google Scholar 

  54. Ören T, Birel Ö, Anık Ü (2018) Electrochemical determination of dopamine using a novel perylenediimide-derivative modified carbon paste electrode. Anal Lett 51(11):1680–1693

    Article  CAS  Google Scholar 

  55. Yola ML (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu 2 ZnSnS 4 NPs/Pt/gC 3 N 4 composite. Microchim Acta 188(3):1–13

    Article  CAS  Google Scholar 

  56. Karaman C et al (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@ carbon dots and Cd 0.5 Zn 0.5 S/d-Ti 3 C 2 T x MXene composite for heart-type fatty acid–binding protein detection. Microchim Acta 188(6):1–15

    Article  CAS  Google Scholar 

  57. Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191

    Article  CAS  PubMed  Google Scholar 

  58. Younus AR, Iqbal J, Muhammad N, Rehman F, Tariq M, Niaz A, Badshah S, Saleh TA, Rahim A (2019) Nonenzymatic amperometric dopamine sensor based on a carbon ceramic electrode of type SiO 2/C modified with Co 3 O 4 nanoparticles. Microchim Acta 186(7):471

    Article  CAS  Google Scholar 

  59. Jiang L, Nelson GW, Abda J, Foord JS (2016) Novel modifications to carbon-based electrodes to improve the electrochemical detection of dopamine. ACS Appl Mater Interfaces 8(42):28338–28348

    Article  CAS  PubMed  Google Scholar 

  60. Caetano FR, Felippe LB, Zarbin AJG, Bergamini MF, Marcolino-Junior LH (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sensors Actuators B Chem 243:43–50

    Article  CAS  Google Scholar 

  61. Venkataprasad G, Madhusudana Reddy T, Lakshmi Narayana A, Hussain OM, Shaikshavali P, Venu Gopal T, Gopal P (2019) A facile synthesis of Fe3O4-Gr nanocomposite and its effective use as electrochemical sensor for the determination of dopamine and as anode material in lithium ion batteries. Sensors Actuators A Phys 293:87–100

    Article  CAS  Google Scholar 

  62. Wiench P, González Z, Menéndez R, Grzyb B, Gryglewicz G (2018) Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors Actuators B Chem 257:143–153

    Article  CAS  Google Scholar 

  63. Sookhakian M, Basirun WJ, Goh BT, Woi PM, Alias Y (2019) Molybdenum disulfide nanosheet decorated with silver nanoparticles for selective detection of dopamine. Colloids Surf B: Biointerfaces 176:80–86

    Article  CAS  PubMed  Google Scholar 

  64. Lu X et al (2021) A covalent organic polymer–TiO 2/Ti 3 C 2 heterostructure as nonenzymatic biosensor for voltammetric detection of dopamine and uric acid. Microchim Acta 188(3):1–11

    Article  CAS  Google Scholar 

  65. Kathiresan V et al (2021) A simple one-step electrochemical deposition of bioinspired nanocomposite for the non-enzymatic detection of dopamine. Journal of Analytical Science and Technology 12(1):1–10

    Article  CAS  Google Scholar 

  66. Shahzad F, Iqbal A, Zaidi SA, Hwang SW, Koo CM (2019) Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J Ind Eng Chem 79:338–344

    Article  CAS  Google Scholar 

  67. Zheng J, Wang B, Ding A, Weng B, Chen J (2018) Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J Electroanal Chem 816:189–194

    Article  CAS  Google Scholar 

  68. Chen T-W, Chinnapaiyan S, Chen SM, Ali MA, Elshikh MS, Mahmoud AH (2020) A feasible sonochemical approach to synthesize CuO@ CeO2 nanomaterial and their enhanced non-enzymatic sensor performance towards neurotransmitter. Ultrason Sonochem 63:104903

    Article  CAS  PubMed  Google Scholar 

  69. Deepika J, Sha R, Badhulika S (2019) A ruthenium (IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Microchim Acta 186(7):480

    Article  CAS  Google Scholar 

Download references

Funding

MHN received financial supports provided by HEC (20-4993/R&D/HEC/14/614) and CUI (16-14/CRGP/CIIT/LHR/15/776).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalid Mahmood or Mian Hasnain Nawaz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1.27 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amara, U., Mehran, M.T., Sarfaraz, B. et al. Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection. Microchim Acta 188, 230 (2021). https://doi.org/10.1007/s00604-021-04884-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04884-0

Keywords

Navigation