Skip to main content
Log in

Tin derived antimony/nitrogen-doped porous carbon (Sb/NPC) composite for electrochemical sensing of albumin from hepatocellular carcinoma patients

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor based on an antimony/nitrogen-doped porous carbon (Sb/NPC) composite has been developed for the quantitative detection of albumin from hepatocellular carcinoma (HCC) patients. Sb/NPC is hydrothermally synthesized from Sn/NPC precursors. The synthesized precursor (Sn/NPC) and the product (Sb/NPC) are characterized by XRD, FTIR, TGA, UV/Vis, SEM, and AFM. Cyclic voltammetry, chronoamperometry, and electrochemical impedance studies are used to investigate the electrochemical performance of Sb/NPC-GCE. Sb/NPC-GCE detects albumin at physiological pH of 7.4 in the potential range 0.92 V and 0.09 V for oxidation and reduction, respectively. LOD and recovery of Sb/NPC-GCE for the determination of albumin are 0.13 ng.mL−1 and 66.6 ± 0.97–100 ± 2.73%, respectively. Chronoamperometry of the modified working electrode demonstrates its stability for 14 h, indicating its reusability and reproducibility. Sb/NPC-GCE is a selective sensor for albumin detection in the presence of interfering species. The electrode has been applied for albumin detection in human serum samples of HCC patients. A negative correlation of albumin with alpha-fetoprotein levels in HCC patients is observed by statistical analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anguizola J, Matsuda R, Barnaby OS, Hoy K, Wa C, DeBolt E, Koke M, Hage DSJCCA (2013) Glycation of human serum albumin 425:64–76

  2. Jahanban-Esfahlan A, Davaran S, Moosavi-Movahedi AA, Dastmalchi SJJotICS (2017) Investigating the interaction of juglone (5-hydroxy-1, 4-naphthoquinone) with serum albumins using spectroscopic and in silico methods. 14 (7):1527–1540

  3. Fu Y-P, Ni X-C, Yi Y, Cai X-Y, He H-W, Wang J-X, Lu Z-F, Han X, Cao Y, Zhou JJM (2016) A novel and validated inflammation-based score (IBS) predicts survival in patients with hepatocellular carcinoma following curative surgical resection: a STROBE-compliant article. 95 (7)

  4. Kumari M, Singh UK, Singh P, Patel RJC (2017) Effect of N-butyl-N-methyl-Morpholinium bromide ionic liquid on the conformation stability of human serum albumin 2 (3):1241–1249

  5. Neumann E, Frei E, Funk D, Becker MD, Schrenk H-H, Müller-Ladner U, Fiehn CJEoodd (2010) Native albumin for targeted drug delivery. 7 (8):915–925

  6. Teng M, Pirrie S, Ward D, Assi L, Hughes R, Stocken D, Johnson PJBjoc (2014) Diagnostic and mechanistic implications of serum free light chains, albumin and alpha-fetoprotein in hepatocellular carcinoma. 110 (9):2277–2282

  7. Bağırsakçı E, Şahin E, Atabey N, Erdal E, Guerra V, Carr BIJO (2017) Role of albumin in growth inhibition in hepatocellular carcinoma. 93 (2):136-142

  8. Wang J, Feng S, Lin J, Zeng Y, Li L, Huang Z, Li B, Zeng H, Chen RJAPL (2013) Serum albumin and globulin analysis for hepatocellular carcinoma detection avoiding false-negative results from alpha-fetoprotein test negative subjects. 103 (20):204106

  9. Fatima B, Hussain D, Saeed A, Sajid MS, Majeed S, Nawaz R, Ashiq MN, Najam-ul-Haq M, Mehmood R (2020) Tellurium doped zinc imidazole framework (Te@ZIF-8) for quantitative determination of hydrogen peroxide from serum of pancreatic cancer patients. Sci Rep 10(1):21077. https://doi.org/10.1038/s41598-020-78115-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fatima B, Hussain D, Bashir S, Hussain HT, Aslam R, Nawaz R, Rashid HN, Bashir N, Majeed S, Ashiq MN, Najam-ul-Haq M (2020) Catalase immobilized antimonene quantum dots used as an electrochemical biosensor for quantitative determination of H2O2 from CA-125 diagnosed ovarian cancer samples. Mater Sci Eng C 117:111296. https://doi.org/10.1016/j.msec.2020.111296

    Article  CAS  Google Scholar 

  11. Tayyab Raza Naqvi S, Rasheed T, Naeem Ashiq M, Najam ul Haq M, Majeed S, Fatima B, Nawaz R, Hussain D, Shafi S (2020) Fabrication of iron modified screen printed carbon electrode for sensing of amino acids. Polyhedron 180:114426. https://doi.org/10.1016/j.poly.2020.114426

    Article  CAS  Google Scholar 

  12. Naqvi STR, Shirinfar B, Hussain D, Majeed S, Ashiq MN, Aslam Y, Ahmed N (2019) Electrochemical sensing of ascorbic acid, hydrogen peroxide and glucose by bimetallic (Fe, Ni)−CNTs composite modified electrode. Electroanalysis 31(5):851–857. https://doi.org/10.1002/elan.201800768

    Article  CAS  Google Scholar 

  13. Asif M, Liu H, Aziz A, Wang H, Wang Z, Ajmal M, Xiao F, Liu H (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359

    Article  CAS  Google Scholar 

  14. Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Xiao F, Liu H (2021) Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: a textile sensor for H2O2 detection in clinical cancer tissues. Chemical Engineering Journal 427:131398. https://doi.org/10.1016/j.cej.2021.131398

    Article  CAS  Google Scholar 

  15. Iftikhar T, Xu Y, Aziz A, Ashraf G, Li G, Asif M, Xiao F, Liu H (2021) Tuning Electrocatalytic aptitude by incorporating α-MnO2 nanorods in cu-MOF/rGO/CuO hybrids: electrochemical sensing of resorcinol for practical applications. ACS Appl Mater Interfaces 13(27):31462–31473. https://doi.org/10.1021/acsami.1c07067

    Article  CAS  PubMed  Google Scholar 

  16. Ashraf G, Asif M, Aziz A, Iftikhar T, Liu H (2021) Rice-spikelet-like copper oxide decorated with platinum stranded in the CNT network for electrochemical in vitro detection of serotonin. ACS Appl Mater Interfaces 13(5):6023–6033. https://doi.org/10.1021/acsami.0c20645

    Article  CAS  PubMed  Google Scholar 

  17. Ashraf G, Asif M, Aziz A, Wang Z, Qiu X, Huang Q, Xiao F, Liu H (2019) Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Microchim Acta 186(6):337

    Article  Google Scholar 

  18. Ashraf G, Asif M, Aziz A, Dao AQ, Zhang T, Iftikhar T, Wang Q, Liu H (2020) Facet-energy inspired metal oxide extended hexapods decorated with graphene quantum dots: sensitive detection of bisphenol A in live cells. Nanoscale 12(16):9014–9023. https://doi.org/10.1039/C9NR10944G

    Article  CAS  PubMed  Google Scholar 

  19. Asif M, Aziz A, Wang Z, Ashraf G, Wang J, Luo H, Chen X, Xiao F, Liu H (2019) Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91(6):3912–3920. https://doi.org/10.1021/acs.analchem.8b04685

    Article  CAS  PubMed  Google Scholar 

  20. Yola ML (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu(2)ZnSnS(4) NPs/Pt/g-C(3)N(4) composite. Mikrochimica acta 188(3):78. https://doi.org/10.1007/s00604-021-04735-y

    Article  CAS  PubMed  Google Scholar 

  21. Karaman C, Karaman O, Atar N, Yola ML (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Microchimica Acta 188(6):182. https://doi.org/10.1007/s00604-021-04838-6

    Article  CAS  PubMed  Google Scholar 

  22. Yola ML, Atar N (2021) Novel voltammetric tumor necrosis factor-alpha (TNF-α) immunosensor based on gold nanoparticles involved in thiol-functionalized multi-walled carbon nanotubes and bimetallic Ni/cu-MOFs. Anal Bioanal Chem 413(9):2481–2492

    Article  CAS  Google Scholar 

  23. Yola ML, Atar N, Özcan N (2021) A novel electrochemical lung cancer biomarker cytokeratin 19 fragment antigen 21-1 immunosensor based on Si 3 N 4/MoS 2 incorporated MWCNTs and core–shell type magnetic nanoparticles. Nanoscale 13(8):4660–4669

    Article  CAS  Google Scholar 

  24. Asif M, Ajmal M, Ashraf G, Muhammad N, Aziz A, Iftikhar T, Wang J, Liu H (2020) The role of biosensors in coronavirus disease-2019 outbreak. Current Opinion in Electrochemistry 23:174–184. https://doi.org/10.1016/j.coelec.2020.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aziz A, Asif M, Ashraf G, Farooq U, Yang Q, Wang S (2021) Trends in biosensing platforms for SARS-CoV-2 detection: a critical appraisal against standard detection tools. Curr Opin Colloid Interface Sci 52:101418. https://doi.org/10.1016/j.cocis.2021.101418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Asif M, Xu Y, Xiao F, Sun Y (2021) Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. Chem Eng J 423:130189. https://doi.org/10.1016/j.cej.2021.130189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He X, Wang Y, Li H, Chen J, Liu Z, Xu F, Zhou Y (2021) Specific recognition of protein by deep eutectic solvent–based magnetic β-cyclodextrin molecularly imprinted polymer. Microchim Acta 188(7):232. https://doi.org/10.1007/s00604-021-04887-x

    Article  CAS  Google Scholar 

  28. Kukkar M, Sharma A, Kumar P, Kim K-H, Deep AJ (2016) Application of MoS2 modified screen-printed electrodes for highly sensitive detection of bovine serum albumin. 939:101–107

  29. Arkan E, Saber R, Karimi Z, Mostafaie A, Shamsipur MJ (2014) Multiwall carbon nanotube-ionic liquid electrode modified with gold nanoparticles as a base for preparation of a novel impedimetric immunosensor for low level detection of human serum albumin in biological fluids 92:74–81

  30. Duan D, Yang H, Ding Y, Ye D, Li L, Ma GJ (2018) Three-dimensional molecularly imprinted electrochemical sensor based on Au NPs@ Ti-based metal-organic frameworks for ultra-trace detection of bovine serum albumin 261:160–166

  31. Zhang G, Yu Y, Guo M, Lin B, Zhang LJS, Chemical AB (2019) A sensitive determination of albumin in urine by molecularly imprinted electrochemical biosensor based on dual-signal strategy 288:564–570

  32. Li M-X, Wang X-H, Zhang L-M, Wei X-P (2017) A high sensitive epitope imprinted electrochemical sensor for bovine serum albumin based on enzyme amplifying 530:68–74

  33. Emsley J (2011) Nature's building blocks: an AZ guide to the elements. Oxford University Press

    Google Scholar 

  34. Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan Q-F, Chen P, Wu Z-Y, Yu S-H (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. 6 (8):7092–7102

  35. Yang Q, Zhou J, Zhang G, Guo C, Li M, Zhu Y, Qian Y (2017) Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. J Mater Chem A 5(24):12144–12148. https://doi.org/10.1039/C7TA03060F

    Article  CAS  Google Scholar 

  36. Mehmood R, Muhammed RK, Hussain S, Sana A (2018) Evaluation of di-potassium and tri-potassium EDTA evacuated tubes for routine haematological testing. J Clin Lab Anal 32(1):e22188

    Article  Google Scholar 

  37. Elci A, Demirtas O, Ozturk IM, Bek A, Esenturk EN (2018) Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities 53 (24):16345–16356

  38. Duan J, Zhang W, Wu C, Fan Q, Zhang W, Hu X, Huang YJ (2015) Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries 16:479–487

  39. Deng Z, Chen D, Tang F, Ren J, Muscat AJ (2009) Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section. 2 (2):151–160

  40. Misra A, Tyagi PK, Singh MK, Misra DJD (2006) FTIR studies of nitrogen doped carbon nanotubes. 15 (2–3):385–388

  41. Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical Methods 2(482):580–632

    Google Scholar 

  42. Dinesh M, Muthumalai K, Haldorai Y, Thangavelu Rajendra Kumar R (2020) MoS2 Nanosheets decorated multi-walled carbon nanotube composite electrocatalyst for 4-Nitrophenol detection and hydrogen evolution reaction. Electroanalysis 32(11):2571–2580

    Article  CAS  Google Scholar 

  43. Sahu DP, Jammalamadaka SN (2019) Detection of bovine serum albumin using hybrid TiO2 + graphene oxide based bio – resistive random access memory device. Sci Rep 9(1):16141. https://doi.org/10.1038/s41598-019-52522-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arulraj AD, Arunkumar A, Vijayan M, Viswanath KB, Vasantha VS (2016) A simple route to develop highly porous nano polypyrrole/reduced graphene oxide composite film for selective determination of dopamine 206:77–85

  45. Wu M-T, He S-Y, Chen S-L, Li L-F, He Z-Q, Zhu Y-Y, He X, Chen H (2019) Clinical and prognostic implications of pretreatment albumin to C-reactive protein ratio in patients with hepatocellular carcinoma. BMC Cancer 19(1):538

    Article  Google Scholar 

  46. Carr BI, Guerra V (2017) Serum albumin levels in relation to tumor parameters in hepatocellular carcinoma patients. Int J Biol Markers 32(4):391–396

    Article  Google Scholar 

  47. Wang X, Wang Q (2018) Alpha-fetoprotein and hepatocellular carcinoma immunity. Canadian Journal of Gastroenterology and Hepatology 2018:1–8

    Google Scholar 

  48. Rungsakulkij N, Suragul W, Mingphruedhi S, Tangtawee P, Muangkaew P, Aeesoa S (2018) Prognostic role of alpha-fetoprotein response after hepatocellular carcinoma resection. World J Clin Cases 6(6):110–120. https://doi.org/10.12998/wjcc.v6.i6.110

    Article  PubMed  PubMed Central  Google Scholar 

  49. Akkiz H, Carr B, Bag H, Karaoğullarından U, Yalçın K, Ekin N, Özakyol A, Altıntaş E, Balaban H, Şimşek H (2020) Serum levels of inflammatory markers CRP, ESR and albumin in relation to survival for patients with hepatocellular carcinoma. International Journal of Clinical Practice:e13593

  50. Yari A, Saeidikhah MJT (2015) Ultra-trace electrochemical impedance determination of bovine serum albumin by a two dimensional silica network citrate-capped gold nanoparticles modified gold electrode 144:1336–1341

  51. Wang Y, Han M, Liu G, Hou X, Huang Y, Wu K, Li CJB (2015) Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Bioelectronics 74:792–798

    Article  CAS  Google Scholar 

  52. Cieplak M, Szwabinska K, Sosnowska M, Chandra BK, Borowicz P, Noworyta K, D’Souza F, Kutner WJB (2015) Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Bioelectronics 74:960–966

    Article  CAS  Google Scholar 

  53. Zhang LL, Ma FF, Kuang YF, Cheng S, Long YF, Xiao QGJSAPAM (2016) Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates. Spectroscopy B 154:98–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Higher Education Commission (HEC), Pakistan, for their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this research.

Corresponding authors

Correspondence to Batool Fatima or Muhammad Najam-ul-Haq.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashiq, R., Fatima, B., Shah, M. et al. Tin derived antimony/nitrogen-doped porous carbon (Sb/NPC) composite for electrochemical sensing of albumin from hepatocellular carcinoma patients. Microchim Acta 188, 338 (2021). https://doi.org/10.1007/s00604-021-05005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05005-7

Keywords

Navigation