Skip to main content
Log in

Wasserstein distance, Fourier series and applications

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We study the Wasserstein metric \(W_p\), a notion of distance between two probability distributions, from the perspective of Fourier Analysis and discuss applications. In particular, we bound the Earth Mover Distance \(W_1\) between the distribution of quadratic residues in a finite field \({\mathbb {F}}_p\) and uniform distribution by \(\lesssim p^{-1/2}\) (the Polya–Vinogradov inequality implies \(\lesssim p^{-1/2} \log {p}\)). We also show that for continuous \(f:{\mathbb {T}} \rightarrow {\mathbb {R}}_{}\) with mean value 0

$$\begin{aligned} (\text{ number } \text{ of } \text{ roots } \text{ of }~f) \cdot \left( \sum _{k=1}^{\infty }{ \frac{ |{\widehat{f}}(k)|^2}{k^2}}\right) ^{\frac{1}{2}} > rsim \frac{\Vert f\Vert ^{2}_{L^1({\mathbb {T}})}}{\Vert f\Vert _{L^{\infty }({\mathbb {T}})}}. \end{aligned}$$

Moreover, we show that for a Laplacian eigenfunction \(-\Delta _g \phi _{\lambda } = \lambda \phi _{\lambda }\) on a compact Riemannian manifold \(W_p\left( \max \left\{ \phi _{\lambda }, 0\right\} dx, \max \left\{ -\phi _{\lambda }, 0\right\} dx\right) \lesssim _p \sqrt{\log {\lambda }/\lambda } \Vert \phi _{\lambda }\Vert _{L^1}^{1/p}\), which is at most a factor \(\sqrt{\log {\lambda }}\) away from sharp. Several other problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series 55, U.S. Government Printing Office, Washington, D.C. (1964)

  2. Aronson, D.: Non-negative solutions of linear parabolic equations. Ann. Sci. Norm. Sup. 22, 607–694 (1968)

    MathSciNet  MATH  Google Scholar 

  3. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bilyk, D.: Roth’s orthogonal function method in discrepancy theory. Unif. Distrib. Theory 6(1), 143–184 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Bilyk, D.: Roth’s orthogonal function method in discrepancy theory and some new connections. In: Panorama of Discrepancy Theory, Lecture Notes in Mathematics 2017, Springer-Verlag, pp. 71–158 (2014)

  6. Bilyk, D., Lacey, M.: On the small ball Inequality in three dimensions. Duke Math. J. 143(1), 81–115 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bilyk, D., Lacey, M., Vagharshakyan, A.: On the small ball inequality in all dimensions. J. Funct. Anal. 254(9), 2470–2502 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bilyk, D., Lacey, M., Vagharshakyan, A.: On the signed small ball inequality. Online J. Anal. Comb. 3, (2008)

  9. Bilyk, D., Lacey, M., Parissis, I., Vagharshakyan, A.: A Three-Dimensional Signed Small Ball Inequality, Dependence in Probability, Analysis and Number Theory, pp. 73–87. Kendrick Press, Heber City (2010)

    MATH  Google Scholar 

  10. Cheng, X., Mishne, G., Steinerberger, S.: The geometry of nodal sets and outlier detection. J. Number Theory 185, 48–64 (2018)

    Article  MathSciNet  Google Scholar 

  11. Choimet, D., Queffelec, H.: Twelve landmarks of twentieth-century analysis. Illustrated by Michael Monerau. Translated from the 2009 French original by Daniele Gibbons and Greg Gibbons. With a foreword by Gilles Godefroy. Cambridge University Press, New York, (2015)

  12. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  13. Dobrusin, R.: Definition of a system of random variables by means of conditional distributions. Teor. Verojatnost. i Primenen. 15, 469–497 (1970)

    MathSciNet  Google Scholar 

  14. Drmota, M., Tichy, R.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, vol. 1651. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  15. Erdős, P., Turan, P.: On a problem in the theory of uniform distribution. I. Nederl. Akad. Wetensch. Proc. 51, 1146–1154 (1948)

    MathSciNet  MATH  Google Scholar 

  16. Erdős, P., Turan, P.: On a problem in the theory of uniform distribution. I. Indag. Math. 10, 370–378 (1948)

    MATH  Google Scholar 

  17. Erdős, P., Turan, P.: On a problem in the theory of uniform distribution. II. Nederl. Akad. Wetensch. Proc. 51, 1262–1269 (1948)

    MathSciNet  MATH  Google Scholar 

  18. Erdős, P., Turan, P.: On a problem in the theory of uniform distribution. II. Indag. Math. 10, 406–413 (1948)

    MATH  Google Scholar 

  19. Georgiev, B., Mukherjee, M.: Nodal geometry. Heat diffusion and Brownian motion. Anal. PDE 11, 133–148 (2018)

    Article  MathSciNet  Google Scholar 

  20. Hardy, G.E., Littlewood, J.E.: A new proof of a theorem on rearrangements. J. London Math. Soc. 23, 163–168 (1948)

    Article  MathSciNet  Google Scholar 

  21. Koksma, J.F.: Some Theorems on Diophantine Inequalities. Mathematisch Centrum, Amsterdam (1950)

    MATH  Google Scholar 

  22. Konyagin, S.: On the Littlewood problem. Izv. Akad. Nauk SSSR Ser. Mat. 45(2), 243–265 (1981). 463

    MathSciNet  MATH  Google Scholar 

  23. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  24. Leveque, W.: An inequality connected with Weyl’s criterion for uniform distribution. In: 1965 Proceedings of Symposium on Pure Mathematics, vol. VIII pp. 22–30. American Mathematical Society, Providence, R.I

  25. Lieb, E.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)

    Article  MathSciNet  Google Scholar 

  26. Lierl, J., Steinerberger, S.: A Local Faber–Krahn inequality and Applications to Schrödinger’s Equation, to appear in Comm. PDE

  27. Loeper, G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pures Appl. 86(1), 68–79 (2006)

    Article  MathSciNet  Google Scholar 

  28. Maury, B., Venel, J.: A discrete contact model for crowd motion. ESAIM:M2AN 45(1), 145–168 (2011)

    Article  MathSciNet  Google Scholar 

  29. McGehee, O., Pigno, L., Smith, B.: Hardy’s inequality and the L1 norm of exponential sums. Ann. Math. 113(3), 613–618 (1981)

    Article  MathSciNet  Google Scholar 

  30. Mehrdad, B., Zhu, L.: Limit theorems for empirical density of greatest common divisors. Math. Proc. Camb. Philos. Soc. 161(3), 517–533 (2016)

    Article  MathSciNet  Google Scholar 

  31. Montgomery, H.: Ten Lectures at the Interface of Harmonic Analysis and Number Theory. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  32. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  Google Scholar 

  33. Rachh, M., Steinerberger, S.: On the location of maxima of solutions of Schroedinger’s equation, to appear in Commun. Pure Appl. Math

  34. Peyre, R.: Comparison between \(W_2\) distance and \(\dot{H}^{-1}\) norm, and Localization of Wasserstein distance, to appear in ESAIM: COCV

  35. Rivat, J., Tenenbaum, G.: Constantes d’Erdos–Turan. Ramanujan J. 9(1–2), 111–121 (2005)

    Article  MathSciNet  Google Scholar 

  36. Ruzsa, I.Z.: On an inequality of Erdős and Turan concerning uniform distribution modulo one, I, sets, graphs and numbers (Budapest, 1991). Coll. Math. Soc. J. Bolyai 60, 621–630 (1992)

    MATH  Google Scholar 

  37. Ruzsa, I.Z.: On an inequality of Erdős and Turan concerning uniform distribution modulo one, II. J. Number Theory 49(1), 84–88 (1994)

    Article  MathSciNet  Google Scholar 

  38. Saksman, E., Webb, C.: The Riemann Zeta function and Gaussian multiplicative chaos: statistics on the critical line, arXiv:1609.00027

  39. Santambrogio, F.: Optimal transport for applied mathematicians. Calculus of Variations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and their Applications, 87. Birkhauser/Springer, Cham, (2015)

  40. Schmidt, W.M.: Irregularities of distribution. VII. Acta Arith. 21, 45–50 (1972)

    Article  MathSciNet  Google Scholar 

  41. Steinerberger, S.: Topological bounds on fourier coefficients and applications to torsion. To appear in J. Funct. Anal

  42. Steinerberger, S.: Oscillatory Functions vanish on a large set. arXiv:1708.05373

  43. Steinerberger, S.: A metric Sturm–Liouville theory in two dimensions. arXiv:1809.01044

  44. Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  45. Villani, C.: Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer-Verlag, Berlin (2009)

    Google Scholar 

  46. Vasershtein, L.N.: Markov processes on a countable product space, describing large systems of automata. Problemy Peredachi Informatsii 5(3), 64–73 (1969)

    MathSciNet  Google Scholar 

  47. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4), 441–479 (1912)

    Article  MathSciNet  Google Scholar 

  48. Zelditch, S.: Eigenfunctions of the Laplacian on a Riemannian Manifold. CBMS Lecture Series. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

Download references

Acknowledgements

The author is very grateful to an anonymous referee for a very thorough and detailed reading as well as several suggestions that greatly improved the quality of the manuscript.

Funding

Funding was provide by Division of Mathematical Sciences (US) (Grant No. 1763179), Alfred P. Sloan Foundation (Grant No. Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Communicated by Gerald Teschl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinerberger, S. Wasserstein distance, Fourier series and applications. Monatsh Math 194, 305–338 (2021). https://doi.org/10.1007/s00605-020-01497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01497-2

Keywords

Mathematics Subject Classification

Navigation