Skip to main content
Log in

Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Biebersteiniaceae comprise a single genus with four species of perennial herbs occurring from central Asia to Greece. A previous molecular phylogenetic study placed one of the species in an isolated position in Sapindales, while morphological studies had placed Biebersteinia in or near Geraniaceae, albeit doubtfully. We tested the monophyly and placement of the family with data from the chloroplast genes rbcL and atpB obtained for all four species, other major clades of Sapindales and outgroups for a total of up to 114 taxa. Parsimony, Bayesian, and likelihood analyses place Biebersteinia in Sapindales, possibly as sister to the other eight families. Strict and relaxed molecular clocks constrained with fossils of Biebersteinia and up to eight other Sapindales suggest that the Biebersteinia crown group diversified in the Oligocene and Miocene, while the stem lineage dates back to the Late Paleocene. Ages for other sapindalean families are earlier than those obtained in more sparsely sampled analyses, although estimates for Burseraceae agree surprisingly well. Ancestral area analyses suggest that Biebersteinia expanded from the eastern part of its range (i.e. Tibet and Inner Mongolia) to the west, although analyses are hampered by the unclear sister group relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • (1998). An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553

    Article  Google Scholar 

  • (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436

    Article  Google Scholar 

  • Bakker F. R., Vassiliades D. D., Morton C. and Savolainen V. (1998). Phylogenetic relationships of Biebersteinia Stephan (Geraniaceae) inferred from rbcL and atpB sequence comparisons. Bot. J. Linn. Soc. 127: 149–158

    Google Scholar 

  • Barron E. J. and Harrison C. G. A. (1980). An analysis of past plate motions; the South Atlantic and Indian oceans. In: Davies, P. A. and Runcorn, S. K. (eds) Mechanisms of continental drift and plate tectonics, pp 89–109. Academic Press, London

    Google Scholar 

  • Bell C. D. and Donoghue M. J. (2003). Phylogeny and biogeography of Morinaceae (Dipsacales) based on nuclear and chloroplast DNA sequences. Org. Divers. Evol. 3: 227–237

    Article  Google Scholar 

  • Boissier E. (1867) Biebersteiniae. In: Flora Orientalis Vol. 1. H. Georg, Basilee, pp. 899–900.

  • Bremer K. (1992). Ancestral areas: a cladistic reinterpretation of the center of origin concept. Syst. Biol. 41: 436–445

    Article  Google Scholar 

  • Brenner G. J. (1996). Evidence for the earliest stage of angiosperm pollen evolution: A paleoequatorial section from Israel. In: Taylor, D. W. and Hickey, L. J. (eds) Flowering plant origin, evolution and phylogeny, pp 91–115. Chapman and Hall, New York

    Chapter  Google Scholar 

  • Chase M. W., Morton C. M. and Kallunki J. A. (1999). Phylogenetic relationships of Rutaceae: a cladistic analysis of the subfamilies using evidence from rbcL and atpB sequence variation. Amer. J. Bot. 86: 1191–1199

    Article  CAS  Google Scholar 

  • Corbett S. L. and Manchester S. R. (2004). Phytogeography and fossil history of Ailanthus (Simaroubaceae). Int. J. Pl. Sci. 165: 671–690

    Article  Google Scholar 

  • DeVore M. L., Kenrick P., Pigg K. B., Ketcham R. A. (2005) CT-Scanning the London Clay: an excellent noninvasive technique for studying pyritized fossil fruits. Abstract 122, Botany 2005.

  • Doyle J. J. and Doyle J. L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15

    Google Scholar 

  • Endlicher S. L. (1841). Biebersteiniaceae. In: Enchiridion Botanicum. Leipzig.

  • Farsam H., Amanlou M., Reza Dehpour A. and Jahaniani F. (2000). Anti-inflammatory and analgesic activity of Biebersteinia multifida DC. root extract. J. Ethnopharmacol. 71: 443–447

    Article  PubMed  CAS  Google Scholar 

  • Fay M. F., Bayer C., Alverson W., Bruijn A. Y. de, Swensen S. M. and Chase M. W. (1998). Plastid rbcL sequences indicate a close affinity between Diegodendron and Bixa. Taxon 47: 43–50

    Article  Google Scholar 

  • Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Fernando E. S., Gadek P. A. and Quinn C. J. (1995). Simaroubaceae, an artificial construct: evidence from rbcL sequence variation. Amer. J. Bot. 82: 92–103

    Article  Google Scholar 

  • Fitch W. M. (1971). Toward defining the course of evolution: minimal change for a specific tree topology. Syst. Zool. 20: 406–416

    Article  Google Scholar 

  • Ghosh P. K. and Roy S. K. (1979). Chisochetonoxylon benegalensis gen. et sp. nov., a new fossil wood of Meliaceae from the Tertiary beds of Birbhum District, West Bengal, India. Curr. Sci. 48: 737–739

    Google Scholar 

  • Graham A. and Jarzen D. M. (1969). Studies in Neotropical paleobotany. I. The Oligocene communities of Puerto Rico. Ann. Missouri Bot. Gard. 56: 308–357

    Article  Google Scholar 

  • Gravendeel B., Schuiteman A. and de Vogel E. F. (2005). Molecular dating and vicariance analysis of Coelogyninae (Orchidaceae). In: Bakker, F. T., Chatrou, L. W., Gravendeel, B., and Pelser, P. B. (eds) Plant-level systematics, new perspectives on pattern & process, pp 131–148. Gantner Verlag, Liechtentstein

    Google Scholar 

  • Greenham J., Vassiliades D. D., Harborne J. B., Williams C. A., Eagles J., Grayer R. J. and Veitch N. C. (2001). A distinctive flavonoid chemistry for the anomalous genus Biebersteinia. Phytochemistry 56: 87–91

    Article  PubMed  CAS  Google Scholar 

  • Grierson A. J. C. and Long D. G. (1987). Flora of Bhutan, vol 1, part 3. Royal Botanic Garden Edinburgh, Edinburgh

    Google Scholar 

  • Hoot S. B., Culham A. and Crane P. R. (1995). The utility of atpB gene sequences in resolving phylogenetic relationships: Comparison within rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann. Missouri Bot. Gard. 82: 194–207

    Article  Google Scholar 

  • Hughes N. F. (1994). The enigma of angiosperm origins. Cambridge Palaeobiology Series 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Knuth R. (1912). Biebersteinia Steph. In: Engler, A. (eds) Das Pflanzenreich IV, Vol. 129, pp 546–549. H. R. Engelmann, Berlin

    Google Scholar 

  • Lee T.-Y. and Lawver L. A. (1995). Cenozoic plate reconstruction of the southeast Asia regions. Tectonophysics 251: 85–138

    Article  Google Scholar 

  • Linder H. P., Hardy C. R. and Rutschmann F. (2005). Taxon sampling effects in molecular clock dating: An example from the African Restionaceae. Molec. Phylogenet. Evol. 35: 569–582

    Article  PubMed  CAS  Google Scholar 

  • MacGinitie H. D. (1969). The Eocene Green River flora of northwestern Colorado and northeastern Utah. Univ. Calif. Publ. Geol. Sci. 83: 1–203

    Google Scholar 

  • MacGinitie, H. D. (1953) Fossil plants of the Florissant Beds, Colorado. Carnegie Institute of Washington, Publication 599, Washington, DC.

  • McClain A. M. and Manchester S. R. (2001). Dipteronia (Sapindaceae) from the Tertiary of North America and implications for the phytogeographic history of the Aceroideae. Amer. J. Bot. 88: 1316–1325

    Article  Google Scholar 

  • McLoughlin S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Austral. J. Bot. 49: 271–300

    Article  Google Scholar 

  • Miceli N., Taviano M. F., Tzakou O., Yannitsaros A., Vassiliades D., Giuffrida D. and Galati E. M. (2005). Biebersteinia orphanidis Boiss. shows antioxidant and anti-inflammatory activity. Phcog. Mag. 1: 54–58

    Google Scholar 

  • Muellner A. N., Samuel R., Johnson S. A., Cheek M., Pennington T. D. and Chase M. W. (2003). Molecular phylogenetics of Meliaceae based on nuclear and plastid DNA sequences. Amer. J. Bot. 90: 471–480

    Article  CAS  Google Scholar 

  • Muellner A. N., Savolainen V., Samuel R. and Chase M. W. (2006). The mahogany family “out-of-Africa”: divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant and fossil distribution of diversity. Molec. Phylogenet. Evol. 40: 236–250

    Article  PubMed  CAS  Google Scholar 

  • Ngamriabsakul C., Newman M. F. and Cronk Q. C. B. (2000). Phylogeny and disjunction in Roscoea (Zingiberaceae). Edinb. J. Bot. 57: 39–61

    Article  Google Scholar 

  • Olmstead R. G., Michaels H. J., Scott K. M. and Palmer J. D. (1992). Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann. Missouri Bot. Gard. 79: 249–265

    Article  Google Scholar 

  • Palmer A. R., Geissman J. (1999) Geologic time scale. The Geological Society of America. Available at: http://www.geosociety.org/science/timescale/timescl.pdf.

  • Posada D. and Crandall K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A., Charleston M. (2000) Phylogenetic Tree Editor v1.0 alpha 4–61. http://evolve. zoo.ox.ac.uk/software/TreeEdit.

  • Reid E. M. and Chandler M. E. J. (1933). The London Clay Flora. British Museum (Natural History), London, UK

    Google Scholar 

  • Ronquist F. (1996) DIVA version 1.1. Computer program and manual available from Uppsala University (http://www.ebc.uu.se/systzoo/research/diva/diva.html).

  • Ronquist F. (1997). Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 46: 195–203

    Article  Google Scholar 

  • Ronquist F. and Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Salamin N., Chase M. W., Hodkinson T. R. and Savolainen V. (2003). Assessing internal support with large phylogenetic DNA matrices. Molec. Phylogenet. Evol. 27: 528–539

    Article  PubMed  CAS  Google Scholar 

  • Sanderson M. J. (1997). A nonparametric approach to estimating divergence times in the absence of rate constancy. Molec. Biol. Evol. 14: 1218–1232

    CAS  Google Scholar 

  • Sanderson M. J. (1998). Estimating rate and time in molecular phylogenies: beyond the molecular clock?. In: Soltis, D. E., Soltis, P. S. and Doyle, J. J. (eds) Molecular systematics of plants II: DNA sequencing, pp 242–264. Kluwer, Boston, Massachusetts, USA

    Google Scholar 

  • Sanderson M. J., Donoghue M. J., Piel W. H. and Eriksson T. (1994). TreeBASE: A prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. Amer. J. Bot. 81: 183

    Article  Google Scholar 

  • Sanderson M. J., Thorne J. L., Wikström N. and Bremer K. (2004). Molecular evidence on plant divergence times. Amer. J. Bot. 91: 1656–1665

    Article  CAS  Google Scholar 

  • Schönbeck-Temesy E. (1970). Geraniaceae: Biebersteinia. In: Rechinger, K. H. (eds) Flora Iranica, pp 63–64. Akademische Druck- u. Verlagsanstalt, Graz

    Google Scholar 

  • Soltis P. S., Soltis D. E., Chase M. W. (1999) Angiosperm phylogeny inferred from multiple genes: a research tool for comparative biology. Nature: 402–404.

  • Soltis D. E. (2000). Angiosperm phylogeny inferred from a combined dataset of 18S rDNA, rbcL and atpB sequences. Bot. J. Linn. Soc. 133: 381–461

    Google Scholar 

  • Song Z.-C., Wang W.-M. and Fei H. (2004). Fossil pollen records of extant angiosperms in China. Bot. Rev. 70: 425–458

    Article  Google Scholar 

  • Stamatakis A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stephan F. (1806). Déscription de deux nouveaux genres de plantes. Mém. Soc. Nat. Mosc. 1: 125–128

    Google Scholar 

  • Swofford D. L. (2002). PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts, USA

    Google Scholar 

  • Summerfield M. A. (1991). Global geomorphology. Prentice Hall, USA, 71–72

    Google Scholar 

  • Takhtajan A. (1986). Floristic regions of the world. University of California Press, Berkeley Los Angeles

    Google Scholar 

  • Takhtajan A. (1997). Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Thorne J. L. and Kishino H (2002). Divergence time estimation and rate evolution with multilocus data sets. Syst. Biol. 51: 689–702

    Article  PubMed  Google Scholar 

  • Tzakou O., Yannitsaros A. and Vassiliades D. (2001). Investigation of the C16:3/C18:3 fatty acid balance in leaf tissues of Biebersteinia orphanidis Boiss. (Biebersteiniaceae). Biochem. Syst. Ecol. 29: 765–767

    Article  PubMed  CAS  Google Scholar 

  • Vassiliades D. and Yannitsaros A. (2000). Orphanides's best discovery. Bot. Chron. 13: 241–248

    Google Scholar 

  • Vidya T. N. C., Fernando P., Melnick D. J. and Sukumar R. (2005). Population genetic structure and conservation of Asian elephants (Elephas maximus) across India. Animal Conservation 8: 377–388

    Article  Google Scholar 

  • Weeks A., Daly D. C. and Simpson B. B. (2005). The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Molec. Phylogenet. Evol. 35: 85–101

    Article  PubMed  CAS  Google Scholar 

  • Wikström N., Savolainen V. and Chase M. W. (2001). Evolution of the angiosperms: calibrating the family tree. Proc. Roy. Soc. Lond. B 268: 2211–2220

    Article  Google Scholar 

  • Yang Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Comp. Appl. BioSci. 13: 555–556 http://abacus.gene.ucl.ac.uk/software/paml.html

    PubMed  CAS  Google Scholar 

  • Zhang X. F., Hu B. L. and Zhou B. N. (1995). Studies on the active constituents of Tibetan herb Biebersteinia heterostemon Maxim. Acta Pharmaceutica Sin. 30: 211–214

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Muellner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muellner, A., Vassiliades, D. & Renner, S. Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context. Plant Syst. Evol. 266, 233–252 (2007). https://doi.org/10.1007/s00606-007-0546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0546-x

Keywords

Navigation