Skip to main content
Log in

Brassicales: an update on chromosomal evolution and ancient polyploidy

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Brassicales comprise 17 families, c. 400 genera and more than 4600 species. Despite the mustard family (crucifers, Brassicaceae) continuing to be the subject of intensive research, the remaining 16 families are largely under studied. Here I summarize the available data on chromosome number and genome size variation across Brassicales in the context of a robust phylogenetic framework. This analysis has revealed extensive knowledge gaps in karyological data for non-crucifer and species-rich families in particular (i.e., Capparaceae, Cleomaceae, Resedaceae and Tropaeolaceae). A parsimonious interpretation of the combined chromosomal and phylogenetic data set suggests that the ancestral pre-Brassicales genome had 9 or 14 chromosome pairs, later multiplied by the At-β (beta) whole-genome duplication (WGD) to n = 18 or 28. This WGD was followed by post-polyploid diploidization marked by diversification to 12 or 13 families and independent decreases in chromosome numbers. Family-specific WGDs are proposed to precede the diversification of Capparaceae, Resedaceae and Tropaeolaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. https://doi.org/10.1038/35048692

    Article  Google Scholar 

  • Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D’Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2010) The genome of Theobroma cacao. Nat Genet 43:101–108. https://doi.org/10.1038/ng.736

    Article  PubMed  CAS  Google Scholar 

  • Barker MS, Vogel H, Schranz ME (2009) Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol 1:391–399. https://doi.org/10.1093/gbe/evp040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2012) Angiosperm DNA C-values database (release 8.0, Dec. 2012). Available at: http://www.kew.org/cvalues/

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930):433–438. https://doi.org/10.1038/nature01521

    Article  PubMed  CAS  Google Scholar 

  • Cardinal-McTeague WM, Sytsma KJ, Hall JC (2016) Biogeography and diversification of Brassicales: a 103 million year tale. Molec Phylogen Evol 99:204–224. https://doi.org/10.1016/j.ympev.2016.02.021

    Article  Google Scholar 

  • Cheng S, van den Bergh E, Zeng P, Zhong X, Xu J, Liu X, Hofberger J, de Bruijn S, Bhide AS, Kuelahoglu C, Bian C, Chen J, Fan G, Kaufmann K, Hall JC, Becker A, Bräutigam A, Weber AP, Shi C, Zheng Z, Li W, Lv M, Tao Y, Wang J, Zou H, Quan Z, Hibberd JM, Zhang G, Zhu XG, Xu X, Schranz ME (2013) The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers. Pl Cell 25:2813–2830. https://doi.org/10.1105/tpc.113.113480

    Article  CAS  Google Scholar 

  • Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217. https://doi.org/10.11646/phytotaxa.261.3.1

    Article  Google Scholar 

  • Cremonini R (2005) Low chromosome number angiosperms. Caryologia 58:403–409. https://doi.org/10.1080/00087114.2005.10589480

    Article  Google Scholar 

  • Edger PP, Hall JC, Harkess A, Tang M, Coombs J, Mohammadin S, Schranz ME, Xiong Z, Leebens-Mack J, Meyers BC, Systma KJ, Koch M, Al-Shehbaz IA, Pires JC (2018) Brassicales phylogeny inferred from 72 plastid genes: a reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. Amer J Bot 105. https://doi.org/10.1002/ajb2.1040

  • Gandolfo MA, Dibbern MC, Romero EJ (1988) Akania patagonica n. sp. and additional material on Akania americana Romero & Hickey (Akaniaceae), from Paleocene sediments of Patagonia. Bull Torrey Bot Club 115:83–88. https://doi.org/10.2307/2996138

    Article  Google Scholar 

  • Huang CH, Zhang C, Liu M, Hu Y, Gao T, Qi J, Ma H (2016) Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Molec Biol Evol 33:2820–2835. https://doi.org/10.1093/molbev/msw157

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. https://doi.org/10.1038/nature06148

    Article  PubMed  CAS  Google Scholar 

  • Kiefer M, Schmickl R, German DA, Lysak M, Al-Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA (2014) BrassiBase: introduction to a novel database on Brassicaceae evolution. Pl Cell Physiol 55:e3. https://doi.org/10.1093/pcp/pct158

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, German DA, Kiefer M, Franzke A (2018) Database taxonomics as key to modern plant biology. Trends Pl Sci 23:4–6. https://doi.org/10.1016/j.tplants.2017.10.005

    Article  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459. https://doi.org/10.1073/pnas.0501102102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandáková T, Lysak MA (2018) Post-polyploid diploidization and diversification through dysploid changes. Curr Opin Pl Biol 42:55–65. https://doi.org/10.1016/j.pbi.2018.03.001

    Article  Google Scholar 

  • Mandáková T, Li Z, Barker MS, Lysak MA (2017) Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Pl J 91:3–21. https://doi.org/10.1111/tpj.13553

    Article  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na JK, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996. https://doi.org/10.1038/nature06856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patchell MJ, Roalson EH, Hall JC (2014) Resolved phylogeny of Cleomaceae based on all three genomes. Taxon 63:315–328. https://doi.org/10.12705/632.17

    Article  Google Scholar 

  • Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The Chromosome Counts Database (CCDB)—a community resource of plant chromosome numbers. New Phytol 206:19–26. https://doi.org/10.1111/nph.13191

    Article  PubMed  Google Scholar 

  • Rockinger A, Sousa A, Carvalho FA, Renner SS (2016) Chromosome number reduction in the sister clade of Carica papaya with concomitant genome size doubling. Amer J Bot 103:1082–1088. https://doi.org/10.3732/ajb.1600134

    Article  CAS  Google Scholar 

  • Salse J (2016) Ancestors of modern plant crops. Curr Opin Pl Biol 30:134–142. https://doi.org/10.1016/j.pbi.2016.02.005

    Article  Google Scholar 

  • Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Pl Cell 18:1152–1165. https://doi.org/10.1105/tpc.106.041111

    Article  CAS  Google Scholar 

  • Schranz ME, Mohammadin S, Edger PP (2012) Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr Opin Pl Biol 15:147–153. https://doi.org/10.1016/j.pbi.2012.03.011

    Article  Google Scholar 

  • Stevens PF (2001 onwards) Angiosperm phylogeny website. Version 14, July 2017 [and more or less continuously updated since]. Available at: http://www.mobot.org/MOBOT/research/APweb/

  • Tian Y, Zeng Y, Zhang J, Yang C, Yan L, Wang X, Shi C, Xie J, Dai T, Peng L, Zeng Huan Y, Xu A, Huang Y, Zhang J, Ma X, Dong Y, Hao S, Sheng J (2015) High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop. Sci China Life Sci 58:627–638. https://doi.org/10.1007/s11427-015-4872-x

    Article  PubMed  Google Scholar 

  • Warwick S, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Pl Syst Evol 259:237–248. https://doi.org/10.1007/s00606-006-0421-1

    Article  Google Scholar 

Download references

Acknowledgements

I thank Patrick P. Edger for discussing the phylogenetic placement of the At-β event and Terezie Mandáková for her help with the chromosome images presented in Fig. 2. This work was supported by a research grant from the Czech Science Foundation (Grant No. P501/12/G090) and the CEITEC 2020 Project (Grant No. LQ1601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Lysak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling editor: Karol Marhold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 20 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. List of chromosome numbers and genome sizes of Brassicales taxa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysak, M.A. Brassicales: an update on chromosomal evolution and ancient polyploidy. Plant Syst Evol 304, 757–762 (2018). https://doi.org/10.1007/s00606-018-1507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-018-1507-2

Keywords

Navigation