Skip to main content
Log in

Multiresolution morphing for planar curves

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We present a multiresolution morphing algorithm using ``as-rigid-as-possible'' shape interpolation combined with an angle-length based multiresolution decomposition of simple 2D piecewise curves. This novel multiresolution representation is defined intrinsically and has the advantage that the details' orientation follows any deformation naturally. The multiresolution morphing algorithm consists of transforming separately the coarse and detail coefficients of the multiresolution decomposition. Thus all LoD (level of detail) applications like LoD display, compression, LoD editing etc. can be applied directly to all morphs without any extra computation. Furthermore, the algorithm can robustly morph between very large size polygons with many local details as illustrated in numerous figures. The intermediate morphs behave natural and least-distorting due to the particular intrinsic multiresolution representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. A. Adams (1975) ArticleTitleThe intrinsic method for curve definition Comput. Aided Des. 7 IssueID4 243–249 Occurrence Handle10.1016/0010-4485(75)90069-X

    Article  Google Scholar 

  • M. Alexa (2002) ArticleTitleRecent advances in mesh morphing Comput. Graph. Forum 21 IssueID2 173–196 Occurrence Handle10.1111/1467-8659.00575

    Article  Google Scholar 

  • Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: SIGGRAPH '00: Proc. 27th Annual Conf. on Computer Graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley 2000, pp. 157–164.

  • M. Bertram (2005) ArticleTitleSingle-knot wavelets for nonuniform b-splines Comput. Aided Geom. 22 IssueID9 848–864 Occurrence Handle2177546

    MathSciNet  Google Scholar 

  • Carmo, M. D.: Differential geometry of curves and surfaces. Prentice Hall 1976.

  • C. Chui E. Quak (1992) Wavelets on a bounded interval D. Braess L. Schumaker (Eds) Numerical methods of approximation theory Birkhäuser Basel 1–24

    Google Scholar 

  • Elber, G., Gotsman, C.: Multiresolution control for nonuniform bspline curve editing. In: 3rd Pacific Graphics Conf. on Computer Graphics and Applications, Seoul, Korea, pp. 267–278, August 1995.

  • Finkelstein, A., Salesin, D. H.: Multiresolution curves. Computer Graphics Proc. (SIGGRAPH 94), pp. 261–268 (1994).

  • M. S. Floater C. Gotsman (1999) ArticleTitleHow to morph tilings injectively J. Comput. Appl. Math. 101 IssueID1–2 117–129 Occurrence Handle0946.52010 Occurrence Handle10.1016/S0377-0427(98)00202-7 Occurrence Handle1664523

    Article  MATH  MathSciNet  Google Scholar 

  • Goldstein, E., Gotsman, C.: Polygon morphing using a multiresolution representation. In: Graphics Interface '95. Canadian Inf. Process. Soc., pp. 247–254 (1995).

  • S. Hahmann G.-P. Bonneau B. Sauvage (2005) ArticleTitleArea preserving deformation of multiresolution curves Comput. Aided Geom. 22 IssueID4 249–267 Occurrence Handle2131521

    MathSciNet  Google Scholar 

  • Lee, A. W. F., Dobkin, D., Sweldens, W., Schröder, P.: Multiresolution mesh morphing. Computer Graphics Proc. (SIGGRAPH 99), 343–350, (1999).

  • Y. Lipman O. Sorkine D. Levin D. Cohen-Or (2005) ArticleTitleLinear rotation-invariant coordinates for meshes ACM Trans. Graph. 24 IssueID3 479–487 Occurrence Handle10.1145/1073204.1073217

    Article  Google Scholar 

  • S. Mallat (1989) ArticleTitleA theory for multiresolution signal decomposition: The wavelet representation IEEE Trans. Pattern Anal. Mach. Intell. 11 674–693 Occurrence Handle0709.94650 Occurrence Handle10.1109/34.192463

    Article  MATH  Google Scholar 

  • D. Meyers (1994) ArticleTitleMultiresolution tiling Comput. Graph. Forum 13 IssueID5 325–340 Occurrence Handle10.1111/1467-8659.1350325 Occurrence Handle1350616

    Article  MathSciNet  Google Scholar 

  • T. Sederberg P. Gao G. Wang H. Mu (1993) ArticleTitle2-D shape blending: An intrinsic solution to the vertex path problem Comput. Graph. (SIGGRAPH 93 Proc.) 27 15–18 Occurrence Handle10.1145/166117.166118

    Article  Google Scholar 

  • T. W. Sederberg E. Greenwood (1992) ArticleTitleA physical based approach to 2-D shape bending Comput. Graph. (SIGGRAPH '92 Proc.) 26 IssueID2 25–34 Occurrence Handle10.1145/142920.134001

    Article  Google Scholar 

  • M. Shapira A. Rappoport (1995) ArticleTitleShape blending using the star-skeleton representation IEEE Comput. Graph. Appl. 15 IssueID2 44–50 Occurrence Handle10.1109/38.365005

    Article  Google Scholar 

  • Stollnitz, E., DeRose, T., Salesin, D.: Wavelets for computer graphics: Theory and applications. Morgan Kaufmann 1996.

  • V. Surazhsky C. Gotsman (2003) ArticleTitleIntrinsic morphing of compatible triangulations Int. J. Shape Model 9 IssueID2 191–201 Occurrence Handle02103238

    MATH  Google Scholar 

  • W. Sweldens (1997) ArticleTitleThe lifting scheme, A construction of second generation wavelets SIAM J. Math. Anal. 29 IssueID2 511–546 Occurrence Handle10.1137/S0036141095289051 Occurrence Handle1616507

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hahmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahmann, S., Bonneau, GP., Caramiaux, B. et al. Multiresolution morphing for planar curves. Computing 79, 197–209 (2007). https://doi.org/10.1007/s00607-006-0198-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-006-0198-7

AMS Subject Classifications

Keywords

Navigation