Skip to main content
Log in

Preserving computational topology by subdivision of quadratic and cubic Bézier curves

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Non-self-intersection is both a topological and a geometric property. It is known that non-self-intersecting regular Bézier curves have non-self-intersecting control polygons, after sufficiently many uniform subdivisions. Here a sufficient condition is given within ℝ3 for a non-self-intersecting, regular C 2 cubic Bézier curve to be ambient isotopic to its control polygon formed after sufficiently many subdivisions. The benefit of using the control polygon as an approximant for scientific visualization is presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C. C.: Why knot: knots, molecules and stick numbers. http://plus.maths.org/issue15/features/knots/2005.

  • Adams, C. C.: The knot book: an elementary introduction to the mathematical theory of knots. W. H. Freeman 2001.

  • N. Amenta T. J. Peters A. Russell (2003) ArticleTitleComputational topology: ambient isotopic approximation of 2-manifolds Theor. Comput. Sci. 305 3–15 Occurrence Handle1071.68097 Occurrence Handle10.1016/S0304-3975(02)00691-6 Occurrence Handle2013563

    Article  MATH  MathSciNet  Google Scholar 

  • L.-E. Andersson S. M. Dorney T. J. Peters N. F. Stewart (1995) ArticleTitlePolyhedral perturbations that preserve topological form CAGD 12 IssueID8 785–799 Occurrence Handle0873.57018 Occurrence Handle1362174

    MATH  MathSciNet  Google Scholar 

  • L.-E. Andersson T. J. Peters N. F. Stewart (2000) ArticleTitleEquivalence of topological form for curvilinear geometric objects Int. J. Comput. Geo. Appl. 10 IssueID6 609–622 Occurrence Handle0970.68179 Occurrence Handle10.1142/S0218195900000346 Occurrence Handle1808214

    Article  MATH  MathSciNet  Google Scholar 

  • E. Cohen T. Lyche R. F. Riesenfeld (1980) ArticleTitleDiscrete B-splines and subdivision techniques in computer-aided geometric design Comput. Graph. Image Process. 14 87–111 Occurrence Handle10.1016/0146-664X(80)90040-4

    Article  Google Scholar 

  • M. DoCarmo (1976) Differential geometry of curves and surfaces Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  • W. Haken (1961) ArticleTitleTheorie der Normalflachen Acta. Math. 105 245–375 Occurrence Handle0100.19402 Occurrence Handle10.1007/BF02559591 Occurrence Handle141106

    Article  MATH  MathSciNet  Google Scholar 

  • M. W. Hirsch (1976) Differential topology Springer New York Occurrence Handle0356.57001

    MATH  Google Scholar 

  • Hass, J., Lagarias, J. C., Pippenger, N.: The computational complexity of knot and link problems. J. ACM 46(2), 185 –211.

  • Lutterkort, D., Peters, J.: Linear envelopes for uniform B-spline curves. Proc. Curves and Surfaces, St. Malo 1999, Vanderbilt, pp. 1–8.

  • T. Maekawa N. M. Patrikalakis T. Sakkalis G. Yu (1998) ArticleTitleAnalysis and applications of pipe surfaces CAGD 15 IssueID5 437–458 Occurrence Handle0995.68148 Occurrence Handle1624043

    MATH  MathSciNet  Google Scholar 

  • G. Monge (1850) Application de l'analys à la geometrie Bachelier Paris

    Google Scholar 

  • Moore, E. L. F.: Computational topology for geometric and molecular approximations. Doctoral Dissertation, University of Connecticut 2006.

  • Neagu, M., Calcoen, E., Lacolle, B.: Bézier curves: topological convergence of the control polygon. 6th Int. Conf. on Mathematical Methods for Curves and Surfaces, Vanderbilt, pp. 347–354 (2000).

  • Peters, T. J.: www.cse.uconn.edu/~tpeters.

  • L. Piegl W. Tiller (1997) The NURBS book Springer New York

    Google Scholar 

  • Stone, M., DeRose, T. D.: A geometric characterization of parametric cubic curves. ACM Trans. Graphics 8(3), 147–163.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, E., Peters, T.J. & Roulier, J.A. Preserving computational topology by subdivision of quadratic and cubic Bézier curves. Computing 79, 317–323 (2007). https://doi.org/10.1007/s00607-006-0208-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-006-0208-9

AMS Subject Classifications

Keywords

Navigation