Skip to main content
Log in

Long-term neuromechanical results of selective tibial neurotomy in patients with spastic equinus foot

  • Clinical Article - Functional
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The neuromechanical consequences of tibial neurotomy have not been extensively studied.

Methods

Fifteen patients were evaluated before and after selective tibial neurotomy (after 2 months and after 15 months) by means of clinical, neurophysiological [tendon (T) reflexes, Hoffmann (H) reflexes and maximum motor response, Mmax] and mechanical parameters (passive stiffness of plantar flexors at the ankle). The neurotomy concerned the soleus (100 % of cases), gastrocnemius (20 % of cases), posterior tibial (60 % of cases) and flexor digitorum longus (47 % of cases) nerves.

Results

Neurotomy provided more than 90 % improvement of clinical spasticity scores, 20 % improvement of walking scores and the angle of passive dorsiflexion (APDF) of the ankle (mean angle: 7°), temporary reduction of the soleus Mmax (18 % at 2 months with return to the preoperative value at 15 months), and lasting reduction of the soleus Hmax/Mmax (68 % at 2 months, 78 % at 15 months) and T/Mmax (84 % at 2 months, 80 % at 15 months). M and H responses of the gastrocnemius (whether or not they were included in the neurotomy) were not modified, while T/Mmax decreased to the same degree as for soleus. Passive stiffness was lastingly decreased from 64.0 Nm/rad to 49.0 Nm/rad (2 months) and 49.5 Nm/rad (15 months).

Conclusion

Selective tibial neurotomy of the soleus nerve induces long-term reduction of reflex hyperexcitability and passive stiffness of plantar flexors in spastic patients, with no lasting impairment of motor efferents. In parallel, it modifies the tendon reflexes of synergistic muscles (gastrocnemius) not concerned by the neurotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lance JW (1980) Symposium synopsis. In: Koella WP (ed) Spasticity: disordered motor control. Year Book Medical Publishers, Chicago, pp 485–494

    Google Scholar 

  2. Lorenz F (1887) Über chirurgische behandlung der angeborenen spastischen gliedstarre. Wien Klin Rdsch 21:25–27

    Google Scholar 

  3. Stoffel A (1912) The treatment of spastic contractures. Am J Orthop Surg 10:611–644

    Google Scholar 

  4. Gros C (1972) La chirurgie de la spasticité. Neurochirurgie 23:316–388

    Google Scholar 

  5. Bleyenheuft C, Detrembleur C, Deltombe T, Fomekong E, Lejeune TM (2008) Quantitative assessment of anaesthetic nerve block and neurotomy in spastic equinus foot: a review of two cases. J Rehabil Med 40:879–881

    PubMed  Google Scholar 

  6. Buffenoir K, Roujeau T, Lapierre F, Menei P, Menegalli-Boggelli D, Mertens P, Decq P (2004) Spastic equinus foot: multicenter study of the long term results of tibial neurotomy. Neurosurgery 55:1130–1137

    Article  PubMed  Google Scholar 

  7. Decq P, Cuny E, Filipetti P, Keravel Y (1998) Role of soleus muscle in spastic equinus foot. Lancet 352:118

    Article  PubMed  CAS  Google Scholar 

  8. Decq P, Filipetti P, Cubillos A, Slavov V, Lefaucheur JP, N’Guyen JP (2000) Soleus neurotomy for treatment of the spastic equinus foot. Groupe d’Evaluation et de Traitement de la Spasticite et de la Dystonie. Neurosurgery 47:1154–1161

    Article  PubMed  CAS  Google Scholar 

  9. Deltombe T, Jamart J, Hanson P, Gustin T (2008) Soleus H reflex and motor unit number estimation after tibial nerve block and neurotomy in patients with spastic equinus foot. Neurophysiol Clin 38:227–233

    Article  PubMed  CAS  Google Scholar 

  10. Sindou M, Mertens P (1988) Selective neurotomy of the tibial nerve for treatment of the spastic foot. Neurosurgery 23:738–744

    Article  PubMed  CAS  Google Scholar 

  11. Roujeau T, Lefaucheur JP, Slavov V, Gherardi R, Decq P (2003) Long term course of the H reflex after selective tibial neurotomy. J Neurol Neurosurg Psychiatry 74:913–917

    Article  PubMed  CAS  Google Scholar 

  12. Singer BJ, Singer KP, Allison GT (2003) Evaluation of extensibility, passive torque and stretch reflex responses in triceps surae muscles following serial casting to correct spastic equinovarus deformity. Brain Inj 17:309–324

    Article  PubMed  CAS  Google Scholar 

  13. Grosset JF, Mora I, Lambertz D, Pérot C (2007) Changes in stretch reflexes and muscle stiffness with age in prepubescent children. J Appl Physiol 102:2352–2360

    Article  PubMed  Google Scholar 

  14. Grosset JF, Piscione J, Lambertz D, Pérot C (2009) Paired changes in electromechanical delay and musculo-tendinous stiffness after endurance or plyometric training. Eur J Appl Physiol 105:131–139

    Article  PubMed  Google Scholar 

  15. Lambertz D, Mora I, Grosset JF, Pérot C (2003) Evaluation of musculotendinous stiffness in prepubertal children and adults, taking into account muscle activity. J Appl Physiol 95:64–72

    PubMed  Google Scholar 

  16. Lambertz D, Pérot C, Kaspranski R, Goubel F (2001) Effects of long-term spaceflight on mechanical properties of muscles in humans. J Appl Physiol 90:179–188

    PubMed  CAS  Google Scholar 

  17. Ashworth B (1964) Preliminary trial of carisoprodal in multiple sclerosis. Practioner 192:540–542

    CAS  Google Scholar 

  18. Bohannon RW, Smith MB (1987) Inter-rater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67:206–207

    PubMed  CAS  Google Scholar 

  19. Tardieu G, Shentoub S, Delarue R (1954) A la recherche d’une technique de mesure de la spasticité. Rev Neurol 91:143–144

    PubMed  CAS  Google Scholar 

  20. Maathuis KG, Van Der Schans CP, Van Iperen A, Rietman HS, Geertzen JH (2005) Gait in children with cerebral palsy: observer reliability of Physician Rating Scale and Edinburgh Visual Gait Analysis Interval Testing Scale. J Pediatr Orthop 25:268–272

    Article  PubMed  Google Scholar 

  21. Hoffmann P (1918) Über die Beziehungen der Sehnenreflexe zur willkürlichen Bewegung und zum Tonus. Zeitsch Biol 68:351–370

    Google Scholar 

  22. Mainar A, Vanhoutte C, Pérot C, Voronine L, Goubel F (1995) The ankle ergometer: a new tool for quantifying changes in mechanical properties of human muscle as a result of spaceflight. Acta Astronaut 36:467–472

    Article  PubMed  CAS  Google Scholar 

  23. Mertens P, Sindou M (1991) Selective peripheral neurotomies for the treatment of spasticity. In: Sindou M, Abbott R, Keravel Y (eds) Neurosurgery for spasticity. Springer, Wien, pp 119–132

    Chapter  Google Scholar 

  24. Privat JM, Privat C (1993) Place des neurotomies fasciculaires sélectives des membres inférieurs dans la chirurgie fonctionnelle de la spasticité. Ann Réadaptat Med Phys 36:349–358

    Google Scholar 

  25. Buffenoir K, Decq P, Lefaucheur JP (2005) Interest of peripheral anesthetic blocks as a diagnosis and prognosis tool in patient with spastic equinus foot: a clinical and electrophysiological study of the effect of block of nerve branches to the triceps surae muscle. Clin Neurophysiol 116:1596–1600

    Article  PubMed  Google Scholar 

  26. Buffenoir K, Rigoard P, Lefaucheur JP, Filipetti P, Decq P (2008) Lidocaine hyperselective motor blocks of the triceps surae nerves: role of the soleus versus gastrocnemius on triceps spasticity and predictive value of the soleus motor block on the results of selective tibial neurotomy. Am J Phys Med Rehabil 87:292–304

    Article  PubMed  Google Scholar 

  27. Deltombe T, Detrembleur C, Hanson P, Gustin T (2006) Selective tibial neurotomy in the treatment of spastic equinovarus foot: a 2-year follow-up of three cases. Am J Phys Med Rehabil 85:82–88

    Article  PubMed  Google Scholar 

  28. Streichenberger N, Mertens P (2003) Histopathologie du muscle spastique. A propos de 26 patients. Neurochirurgie 49:185–189

    PubMed  CAS  Google Scholar 

  29. Toft E, Sinkjaer T (1993) H-reflex changes during contractions of the ankle extensors in spastic patients. Acta Neurol Scand 88:327–333

    Article  PubMed  CAS  Google Scholar 

  30. Angel RW, Hoffmann WW (1963) The H reflex in normal, spastic and rigid subjects. Arch Neurol 8:591–596

    Article  Google Scholar 

  31. Pierrot-Deseilligny E, Mazevet D (2000) The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin 30:67–80

    Article  PubMed  CAS  Google Scholar 

  32. Einsiedel LJ, Luff AR (1992) Alterations in the contractile properties of motor units within the ageing medial gastrocnemius. J Neurol Sci 112:170–177

    Article  PubMed  CAS  Google Scholar 

  33. Einsiedel LJ, Luff AR (1992) Effect of partial denervation on motor units in the ageing rat medial gastrocnemius. J Neurol Sci 112:178–184

    Article  PubMed  CAS  Google Scholar 

  34. Einsiedel LJ, Luff AR (1994) Activity and motor unit size in partially denervated rat medial gastrocnemius. J Appl Physiol 76:2663–2671

    PubMed  CAS  Google Scholar 

  35. Einsiedel LJ, Luff AR, Proske U (1992) Sprouting of fusimotor neurones after partial denervation of the cat soleus muscle. Exp Brain Res 90:369–374

    Article  PubMed  CAS  Google Scholar 

  36. Dengler R, Konstanzer A, Hesse S, Schubert M, Wolf W (1989) Collateral nerve sprouting and twitch forces of single motor units in conditions with partial denervation in man. Neurosci Lett 97:118–122

    Article  PubMed  CAS  Google Scholar 

  37. Gordon T, Yang JF, Ayer K, Stein RB, Tyreman N (1993) Recorvery potential of muscle after partial denervation: a comparison between rats and humans. Brain Res Bull 30:477–482

    Article  PubMed  CAS  Google Scholar 

  38. Bewick GS, Tonge DA (1991) Characteristics of end-plates formed in mouse skeletal muscles reinnervated by their own or by foreign nerves. Anat Rec 230:273–282

    Article  PubMed  CAS  Google Scholar 

  39. Rotshenker S (1978) Sprouting of intact motor neurons induced by neuronal lesion in the absence of denervated muscle fibers and degenerating axons. Brain Res 155:354–356

    Article  PubMed  CAS  Google Scholar 

  40. Rafuse VF, Gordon T, Orozco R (1992) Proportional enlargement of motor units after partial denervation of cat triceps surae muscles. J Neurophysiol 68:1261–1276

    PubMed  CAS  Google Scholar 

  41. Banks RW, Barker D (1989) Specificities of afferents reinnervating cat muscle spindles after nerve section. J Physiol 408:345–372

    PubMed  CAS  Google Scholar 

  42. Brown MC, Butler RG (1976) Regeneration of afferent and efferent fibres to muscle spindles after nerve injury in adults cats. J Physiol 260:253–266

    PubMed  CAS  Google Scholar 

  43. Collins WF 3rd, Mendell LM, Munson JB (1986) On the specificity of sensory reinnervation of cat skeletal muscle. J Physiol 375:587–609

    PubMed  Google Scholar 

  44. Anderson J, Almeida-Silveira MI, Pérot CR (1999) Reflex and muscular adaptations in rat soleus muscle after hindlimb suspension. J Exp Biol 202:2701–2707

    PubMed  CAS  Google Scholar 

  45. Duchateau J (1995) Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 27:1581–1589

    PubMed  CAS  Google Scholar 

  46. Lambertz D, Goubel F, Kaspranski R, Pérot C (2003) Influence of long-term spaceflight on neuromechanical properties of muscles in humans. J Appl Physiol 94:490–498

    PubMed  Google Scholar 

  47. Seynnes OR, Maffiuletti NA, Maganaris CN, de Boer MD, Pensini M, di Prampero PE, Narici MV (2008) Soleus T reflex modulation in response to spinal and tendinous adaptations to unilateral lower limb suspension in humans. Acta Physiol 194:239–251

    Article  CAS  Google Scholar 

  48. Lamy JC, Wargon I, Mazevet D, Ghanim Z, Pradat-Diehl P, Katz R (2009) Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain 132:734–748

    Article  PubMed  Google Scholar 

  49. Tsuruike M, Koceja DM, Yabe K, Shima N (2003) Age comparison of H-reflex modulation with the Jendrassik maneuver and postural complexity. Clin Neurophysiol 114:945–953

    Article  PubMed  Google Scholar 

  50. Voerman GE, Gregoric M, Hermens HJ (2005) Neurophysiological methods for the assessment of spasticity: the Hoffmann reflex, the tendon reflex, and the stretch reflex. Disabil Rehabil 27:33–68

    Article  PubMed  CAS  Google Scholar 

  51. Rabita G, Dupont L, Thevenon A, Lensel-Corbeil G, Pérot C, Vanvelcenaher J (2005) Differences in kinematic parameters and plantarflexor reflex responses between manual (Ashworth) and isokinetic mobilisations in spasticity assessment. Clin Neurophysiol 116:93–100

    Article  PubMed  Google Scholar 

  52. Rabita G, Dupont L, Thevenon A, Lensel-Corbeil G, Pérot C, Vanvelcenaher J (2005) Quantitative assessment of the velocity-dependent increase in resistance to passive stretch in spastic plantarflexors. Clin Biomech 20:745–753

    Article  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kévin Buffenoir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffenoir, K., Decq, P., Hamel, O. et al. Long-term neuromechanical results of selective tibial neurotomy in patients with spastic equinus foot. Acta Neurochir 155, 1731–1743 (2013). https://doi.org/10.1007/s00701-013-1770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-013-1770-5

Keywords

Navigation