Skip to main content

Advertisement

Log in

Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Type A monoamine oxidase (MAOA) catabolizes monoamine transmitters, serotonin, norepinephrine and dopamine, and plays a major role in the onset, progression and therapy of neuropsychiatric disorders. In depressive disorders, increase in MAOA expression and decrease in brain levels of serotonin and norepinephrine are proposed as the major pathogenic factors. The functional polymorphism of MAOA gene and genes in serotonin signal pathway are associated with depression. This review presents recent advance in studies on the role of MAOA in major depressive disorder and related emotional disorders. MAOA and serotonin regulate the prenatal development and postnatal maintenance of brain architecture and neurocircuit, as shown by MAOA-deficient humans and MAO knockout animal models. Impaired neurogenesis in the mature hippocampus has been proposed as “adult neurogenesis” hypothesis of depression. MAOA modulates the sensitivity to stress in the stages of brain development and maturation, and the interaction of gene–environmental factors in the early stage regulates the onset of depressive behaviors in adulthood. Vice versa environmental factors affect MAOA expression by epigenetic regulation. MAO inhibitors not only restore compromised neurotransmitters, but also protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors, especially brain-derived neurotrophic factor, the deficiency of which is detected in depression. This review discusses novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BD:

Bipolar depression

HPA:

Hypothalamic–pituitary–adrenal

5-HT, 5-HTR, 5-HTT:

Serotonin, serotonin receptor and transporter

MAOA and MAOB:

Type A and B monoamine oxidase

MDD:

Major depressive disorder

uVNTR:

Untranslated variable number tandem repeat

References

  • Aarsland D, Pahlhagen S, Ballard CG, Ehrt U, Svenningsson P (2012) Depression in Parkinson disease—epidemiology, mechanisms and management. Nat Rev Neurol 8(1):35–47

    Article  CAS  Google Scholar 

  • Alenina N, Klempin F (2015) The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 277:49–57

    Article  CAS  PubMed  Google Scholar 

  • Alvarez C, Vitalis T, Fon EA, Hamon M, Seif I, Edwards R, Gasper P, Cases O (2002) Effects of genetic depletion of monoamines on somatosensory cortical development. Neurosci 115(3):753–764

    Article  CAS  Google Scholar 

  • Amsterdam JD, Shults J (2005) MAOI efficiency and safety in advanced stage treatment-resistant depression—a retrospective study. J Affect Dis 89(1–3):183–188

    Article  CAS  PubMed  Google Scholar 

  • Anderson AD, Oqundo MA, Parsey RV, Milak MS, Campbell C, Mann JJ (2004) Regional brain response to serotonin in major depressive disorder. J Affect Disord 82(3):411–417

    CAS  PubMed  Google Scholar 

  • Arango V, Underwood MD, Boldrini M, Tamir H, Kassier SA, Hisiung S, Chen JJX, Mann JJ (2001) Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 25(6):892–903

    Article  CAS  PubMed  Google Scholar 

  • Arbus C, Gardette V, Bui E et al (2010) Antidepressant use in Alzheimer’s disease patients: results of the REALFR cohort. Int Psychogeriatr 22(1):120–128

    Article  PubMed  Google Scholar 

  • Badavath VN, Baysal I, Ulcar G, Sinha BN, Jayaprakash V (2016) Monoamine oxidase inhibitory activity of novel pyrazoline analogues: curcumin based design and synthesis. ACS Med Chem Lett 7(1):56–61

    Article  CAS  PubMed  Google Scholar 

  • Bahramsoltani R, Farzaei MH, Farahani MS, Rahimi R (2015) Phytochemical constituents as future antidepressants: a comprehensive review. Rev Neurosci 26(6):699–719

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29(3):450–460

    Article  CAS  PubMed  Google Scholar 

  • Bandaruk Y, Mukai R, Kawamura T, Nemoto H, Terao J (2012) Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J Agric Food Chem 60(4):10270–10277

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Hellier J, Dewey M et al (2011) Sertraline or mitrazapine for depression in dementia (HTA-SADD): a randomised, multicentre, double-blind, placebo-controlled trial. Lancet 378(9789):403–411

    Article  CAS  PubMed  Google Scholar 

  • Barone P, Santangelo G, Morgante L et al (2015) A randomized clinical trial to evaluate the effects of rasagiline on depressive symptoms in non-demented Parkinson’s disease patients. Eur J Neurol 22(8):1184–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartl J, Müller T, Grünblatt E, Gerlach M, Riederer P (2014) Chronic monoamine oxidase-B inhibitor treatment blocks monoamine oxidase-A enzyme activity. J Neural Transm 121(4):379–383

    Article  CAS  PubMed  Google Scholar 

  • Beach SRH, Brody GH, Gunter TD, Packer H, Wernett P, Philibert RA (2010) Child maltreatment moderates the association of MAOA with symptoms of depression and antisocial personal disorder. J Fam Psychol 24(1):12–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett-Clarke CA, Leslie MJ, Lane RD, Rhoades RW (1994) Effect of serotonin depletion on vibrissa-related patterns of thalamic afferents in the rat’s somatosensory cortex. J Neurosci 14(12):7594–7607

    CAS  PubMed  Google Scholar 

  • Bergman J, Miodownik C, Bersudsky Y, Sokolik S, Lermer PP, Kreinin A, Polakiewicz J, Lermer V (2013) Curcumin as an add-on to antidepressive treatment: a randomized, double-blind, placebo-controlled, pilot clinical study. Clin Neuropharmacol 36(3):73–77

    Article  CAS  PubMed  Google Scholar 

  • Boldrini M, Underwood M, Hen R et al (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34(11):2376–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrini M, Santiago A, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, Mann JJ (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38(6):1068–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet U (2003) Moclobemide: therapeutic use and clinical studies. CNS Drug Rev 9(1):97–140

    Article  CAS  PubMed  Google Scholar 

  • Bortolato M, Shih JC (2011) Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. Int Rev Neurobiol 100:13–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Bremner JD, Narayan M, Anderson ER, Stib LH, Miller HL, Chamey DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157(1):115–118

    Article  CAS  PubMed  Google Scholar 

  • Brummett BH, Krystal AD, Siegler IC et al (2007) Associations of a regulatory polymorphism of monoamine oxidase-A gene promoter (MAOA-uVNTR) with symptoms of depression and sleep quality. Psychosom Med 69(5):396–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO, Ropers HH, Van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580

    Article  CAS  PubMed  Google Scholar 

  • Buckholtz JW, Meyer-Lindenberg A (2008) MAOA and the neurogenic architecture of human aggression. Trends Neurosci 31(3):120–129

    Article  CAS  PubMed  Google Scholar 

  • Buznikov GA, Lambert HW, Lauder JM (2001) Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. Cell Tissue Res 305(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH, Heninger GR, McDougle CJ (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19(1):26–35

    Article  CAS  PubMed  Google Scholar 

  • Carradori S, Gidaro MC, Petzer A, Costa G, Gulglielmi P, Chimenti P, Alcaro S, Petzer JP (2016) Inhibition of human monoamine oxidase: biological and molecular modeling studies on selected natural flavonoids. J Agric Food Chem 64(47):9004–9011

    Article  CAS  PubMed  Google Scholar 

  • Cases O, Vitalis T, Seif I, de Mäyer E, Sotelo C, Gasper P (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    Article  CAS  PubMed  Google Scholar 

  • Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE (2010) Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 167(5):509–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Checknita D, Maussion G, Labonte B et al (2015) Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder. Br J Psychiatry 206(3):216–222

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Cases O, Rebrin I, Wu W, Gallaher TK, Seif I, Shih JC (2007) Forebrain-specific expression of monoamine oxidase A reduces neurotransmitter levels, restores the brain structure, and rescues aggressive behavior in monoamine oxidase-A deficient mice. J Biol Chem 282(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang J, Zhang L, Shen Y, Xu Q (2012) Effects of MAOA promoter methylation on susceptibility to paranoid schizophrenia. Hum Genet 131(7):1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Chimenti F, Cottiglia F, Bonsignore L et al (2006) Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J Nat Prod 69(6):945–949

    Article  CAS  PubMed  Google Scholar 

  • Chiou SH, Ku HH, Tsai TH, Lin HL, Chen LH, Chien CS, Ho LL-T, Lee CH, Chang YL (2006) Moclobemide upregulated Bcl-2 expression and induce neural stem cell differentiation into serotoninergic neurons via extracellular-regulated kinase pathway. Br J Pharmacol 148(5):587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb JA, Simpson J, Mahajan CJ et al (2013) Hippocampal volume and total cell numbers in major depressive disorder. J Psychiatry Res 47(3):299–306

    Article  Google Scholar 

  • Cole J, Costafreda SG, McGuffin P, Fu CH (2011) Hippocampal atrophy in the first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord 134(1–3):483–487

    Article  PubMed  Google Scholar 

  • Coppen A, Swade V, Wood K (1978) Platelet 5-hydroxytryptamine accumulation in depressive illness. Clin Chin Acta 87(1):165–168

    Article  CAS  Google Scholar 

  • Cowen PJ (2008) Serotonin and depression: pathophysiological mechanism or marketing myth? Trends Pharmacol Sci 29(9):433–436

    Article  CAS  PubMed  Google Scholar 

  • Creson TK, Yuan P, Manji HK et al (2009) Evidence for involvement of ERK, PI3 K, and RSK in induction of Bcl-2 by calproate. J Mol Neurosci 37(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Dell’Osso B, D’Addario C, Palazzo MC et al (2014) Epigenetic modulation of BDNF gene: differences in DNA methylation between unipolar and bipolar patients. J Affect Disord 166:330–333

    Article  PubMed  CAS  Google Scholar 

  • deVerteuil RL, Lehmann HE (1958) Therapeutic trial of iproniazid (Marsilid) in depression and apathetic patients. Can Med Assoc J 78(2):131–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Iulio F, Palmer K, Blundo C, Casini AR, Gianni W, Caltagirone C, Spalletta G (2010) Occurrence of neuropsychiatric symptoms and psychiatric disorders in mild Alzheimer’s disease and mild cognitive impairment subtypes. Int Psychogeriatr 22(4):629–640

    Article  PubMed  Google Scholar 

  • Diaz SL, Narboux-Neme N, Trowbridge S et al (2013) Paradoxical increase in survival of newborn neurons in the dentate gyrus of mice with constitutive depletion of serotonin. Eur J Neurosci 38(5):2650–2658

    Article  PubMed  Google Scholar 

  • Domschke K, Hohoff C, Mortensen LS, Roehrs T, Deckert J, Arolt V, Baune BT (2008) Monoamine oxidase A variant influences antidepressant treatment response to female patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 32(1):224–228

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Tidow N, Schwarte K et al (2015) Pharmacoepigenetics of depression: no major influence of MAO-A DNA methylation on treatment on treatment response. J Neural Transm 122(1):99–108

    Article  CAS  PubMed  Google Scholar 

  • Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, Raichie ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386:824–827

    Article  CAS  PubMed  Google Scholar 

  • Duncan J, Johnson S, Ou XM (2012) Monoamine oxidase in major depressive disorder and alcoholism. Drug Disc Ther 6(3):112–122

    CAS  Google Scholar 

  • Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga A, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(8):804–816

    Article  CAS  PubMed  Google Scholar 

  • Ebadi M, Brown-Borg H, Ren J, Sharma S, Shavali S, ReFacy HE, Carlson EC (2006) Therapeutic efficacy of selegiline in neurodegenerative disorders and neurological diseases. Curr Drug Targets 7(11):1513–1529

    Article  CAS  PubMed  Google Scholar 

  • Eisch AJ, Petrik D (2012) Depression and hippocampal neurogenesis: a road to remission? Science 338(6103):72–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelbrecht I, Petzer JP, Petzer A (2015) The synthesis and evaluation of sesamol and benzodioxane derivatives as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 25(9):1896–1900

    Article  CAS  PubMed  Google Scholar 

  • Fajemiroye JO, da Silva DM, de Oliveira DR, Costa EA (2016) Treatment of anxiety and depression: medical plants in retrospect. Fundam Clin Pharmacol 30(3):198–215

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Liu B, Jiang T, Jiang X, Zhao H, Zhang J (2010) Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders. Psychiatr Genet 20(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Feiger AD, Rickels K, Rynn MA, Zimbroff DL, Robinson DS (2006) Selegiline transdermal system for the treatment of major depression disorder: an 8-week, double-controlled, flexible-dose titration trial. J Clin Psychiatry 67(9):1354–1361

    Article  CAS  PubMed  Google Scholar 

  • Fiedorowicz JG, Swartz KL (2004) The role of monoamine oxidase inhibitors in current psychiatric practice. J Psychiatric Pract 10(4):239–248

    Article  Google Scholar 

  • Finberg JPM, Rabey JM (2016) Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol 7:Article 340

  • Foltran RB, Diaz SL (2016) BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem 38(2):204–221

    Article  CAS  Google Scholar 

  • Fowler JS, Logan J, Volow ND, Wang GJ, MacGregor RR, Ding YS (2002) Monoamine oxidase: radiotracer development and human studies. Methods 27:263–277

    Article  CAS  PubMed  Google Scholar 

  • Fowler JS, Logan J, Volkow ND et al (2015) Evidence that formulations of the selective MAO-B inhibitor, selegiline, which bypass first-pass metabolism, also inhibit MAO-A in the human brain. Neuropsychopharmacology 40(3):650–657

    Article  CAS  PubMed  Google Scholar 

  • Frodl T, Meisenzahl EM, Zetssche T, Born C, Jaeger M, Groll C, Bottlender R, Leinsinger G, Moeller HJ (2003) Larger amygdala volumes in the first depressive episodes as compared to recurrent depression and healthy control subjects. Biol Psychiatry 53(4):338–344

    Article  PubMed  Google Scholar 

  • Frodl T, Jäger M, Smajstrlova I et al (2008) Effects of hippocampal and amygdala volumes on the clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci 35(5):423–430

    Google Scholar 

  • Gaig C, Vilas D, Infante J et al (2014) Nonmotor symptoms in LRRK2 G2019S associated Parkinson’s disease. PLoS One 9(10):e108982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4(12):1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Gidaro MC, Astorino C, Petzer A et al (2016) Kaempferol as selective human MAO-A inhibiter: analytical detection in Calabrian red wines, biological and molecular modeling studies. J Agric Food Chem 64(6):1394–1400

    Article  CAS  PubMed  Google Scholar 

  • Godar SC, Bortlato M, Richards SE, Li FG, Chen K, Wellman CL, Shih JC (2015) Monoamine oxidase A is required for rapid dendritic remodeling in response to stress. Int J Neuropsychopharmacol 18(9):1–12

    Article  CAS  Google Scholar 

  • Gordon MN, Muller CD, Sheman KA, Morgan DG, Azzaro A, Wecker L (1999) Oral versus transdermal selegiline: antidepressant-like activity in rats. Pharmacol Biochem Behav 63(3):501–506

    Article  CAS  PubMed  Google Scholar 

  • Grimbsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci USA 88(9):3637–3641

    Article  Google Scholar 

  • Grünewald M, Johnson S, Lu D et al (2012) Mechanistic role of a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J Biol Chem 287(29):24195–24206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guiard BP, David DJ, Deltheil T et al (2008) Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype. Int J Neuropsychopharmacol 11:79–92

    CAS  PubMed  Google Scholar 

  • Gutierrez B, Arias B, Gasto C, Catalan R, Pintor L, Fananas L (2004) Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders. Psychiatr Genet 14(4):203–208

    Article  PubMed  Google Scholar 

  • Holschneider DP, Chen K, Seif I, Shih JC (2001) Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B. Br Res Bull 56(5):453–462

    Article  CAS  Google Scholar 

  • Hotamisligil GS, Breakfield XO (1991) Human monoamine oxidase A gene determines levels of enzyme activity. Am J Hum Genet 49:383–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Cate SP, Battistuzzi C, Oquendo MA, Brent D, Mann JJ (2004) An association between a functional polymorphism in the monoamine oxidase A gene promoter, impulsive traits and early abuse experiments. Neuropsychopharmacology 29(8):1498–1505

    Article  CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M (2012) Type A monoamine oxidase is associated with induction of neuroprotective Bcl-2 by rasagiline, an inhibitor of type B monoamine oxidase. J Neural Transm 119(4):405–414

    Article  CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M (2013) Rasagiline and selegiline, inhibitors of type B monoamine oxidase, induce type A monoamine oxidase in human SH-SY5Y cells. J Neural Transm 120(3):435–444

    Article  CAS  PubMed  Google Scholar 

  • Ishihara L, Brayne C (2006) A systematic review of depression and mental illness preceding Parkinson’s disease. Acta Neurol Scand 113(4):211–220

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, van Praag H, Gage FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5(3):262–269

    Article  CAS  PubMed  Google Scholar 

  • Johnson S, Stockmeier CA, Meyer JH et al (2014) The reduction of R1, a novel repressor protein for monoamine oxidase A, in major depressive disorder. Neuropsychopharmacology 36(10):2139–2148

    Article  CAS  Google Scholar 

  • Kang HJ, Kim JM, Lee JY et al (2013) BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord 151(2):679–685

    Article  CAS  PubMed  Google Scholar 

  • Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Karg KK, Burmeiser M, Shedden K, Sen S (2011) The serotonin transporter promoter variant (5-HTTLPR), stress and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 68(5):444–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempton MJ, Salvador Z, Munafö MR, Geddes JR, Simmons A, Frangou S, Williams SC (2011) Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68(7):675–690

    Article  PubMed  Google Scholar 

  • Kim JJ, Shih JC, Chen K et al (1997) Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice. Proc Natl Acad Sci USA 94(11):5929–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11(10):903–913

    Article  CAS  PubMed  Google Scholar 

  • Kolla NY, Chiuccariello L, Wilson AA et al (2016) Elevated monoamine oxidase-A distribution volume in borderline personality disorder is associated with severity across mood symptoms, suicidality, and cognition. Biol Psychiatry 79(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • Kostic VS, Agosta F, Petrovic L, Galantucci S, Spica V, Jecmenica-Lukic M, Filippi M (2010) Regional patterns of brain tissue loss associated with depression in Parkinson disease. Neurology 75(10):857–863

    Article  CAS  PubMed  Google Scholar 

  • Lavretsky H, Siddarth P, Kepe V et al (2009) Depression and anxiety symptoms are associated with cerebral FDDNP-PET binding in middle-aged and older nondemented adults. Am J Geriatr Psychiatry 17(6):493–502

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4(2):117–128

    Article  CAS  PubMed  Google Scholar 

  • Leng Y, Fessler EB, Chung D (2013) Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: role of chromatin remodeling and Bcl-2 induction. Int J Neuropsychopharmacol 16:607–620

    Article  CAS  PubMed  Google Scholar 

  • Li YF, Zhang YZ, Liu YQ, Wang HL, Yuan L, Luo ZP (2004) Moclobemide up-regulates proliferation of hippocampal progeny cells in chronically stressed mice. Acta Pharmacol Sin 25(11):1408–1412

    CAS  PubMed  Google Scholar 

  • Lim LCC, Powell JF, Murray R, Gill M (1994) Monoamine oxidase A gene and bipolar affective disorder. Am J Hum Genet 54:1122–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YMJ, Davammani F, Yang WC, Lai TJ, Sun HS (2008) Association analysis of monoamine oxidase A gene and bipolar affective disorder in Han Chinese. Behav Br Funct 4:21

    Article  CAS  Google Scholar 

  • Lopresti AL, Drummond PD (2017) Efficiency of curcumin, and a saffron/curcumin combination for the treatment of major depression: a randomised, double-blind, placebo-controlled study. J Affect Disord 207:188–196

    Article  CAS  PubMed  Google Scholar 

  • Lotufo-Neto F, Trivedi A, Thase ME (1999) Meta-analysis of the reversible inhibitors of monoamine oxidase type A moclobemide and brofaromine for the treatment of depression. Neuropsychopharmacology 20(3):226–247

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Johnson C, Johnson S, Tzik S, Ou XM (2008) The neuroprotective effect of antidepressant drug via inhibition of TIEG2-MAO B mediated cell death. Drug Discov Ther 2(5):289–295

    PubMed  PubMed Central  Google Scholar 

  • Lucassen PJ, Müller MB, Holsber F, Bauer J, Holtrop A, Wouda J, Hoogendijk WJG, De Kloet ER, Swaab DF (2001) Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 158(2):453–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucassen PJ, Stumpel MW, Wang Q, Aronica E (2010) Decreased number of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 58(6):940–949

    Article  CAS  PubMed  Google Scholar 

  • Madsen K, Torstensen E, Holst KK et al (2015) Familial risk for major depression is associated with lower striatal 5-HT4 receptor binding. Int J Neuropsychopharmacol. doi:10.1093/ijnp/pyu034

    Google Scholar 

  • Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE (2004) Implications of adult hippocampal neurogenesis in antidepressant action. J Psychiatry Neurosci 29(3):196–205

    PubMed  PubMed Central  Google Scholar 

  • Mann JJ, Aarons SF, Wilner PJ, Keilp JG, Sweeney JA, Pearlstein T, Frances AJ, Kocsis JH, Brown RP (1989) A control study of the antidepressant efficacy and side effects of (−)-deprenyl. A selective monoamine oxidase inhibitor. Arch Gen Psychiatry 6(1):45–50

    Article  Google Scholar 

  • Marsh L (2013) Depression and Parkinson’s disease: current knowledge. Curr Neurol Neurosci Rep 13(12):409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33(1):73–83

    Article  CAS  PubMed  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun T (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(55646):890–893

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Naoi M (2013) “70th Birthday Professor Riederer” Induction of glial cell-line-derived and brain-derived neurotrophic factors by rasagiline and (−)deprenyl: a way to a disease-modifying therapy? J Neural Transm 120(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Mayberg HS, Solomon DH (1995) Depression in Parkinson’s disease: a biochemical and organic viewpoint. Acta Neurol 65:49–60

    CAS  Google Scholar 

  • McCarthy D, Lueras P, Bhide P (2007) Elevated dopamine levels during gestation reduced region-specific decreases in neurogenesis and subtle deficits in neuronal numbers. Br Res 1182:11–25

    Article  CAS  Google Scholar 

  • Melas PA, Forsell Y (2015) Hypomethylation of MAOA’s first exon region in depression: a replication study. Psychiatry Res 226(1):389–391

    Article  CAS  PubMed  Google Scholar 

  • Mendlewic J, Youdim MB (1983) l-Deprenyl, a selective monoamine oxidase type B inhibitor, in the treatment of depression: a double blind evaluation. Br J Psychiatry 142:508–511

    Article  Google Scholar 

  • Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Buyske S, Bienfrait K, Dicke A (2009) A controlled trial of antidepressants in patients with Parkinson disease and depression. Neurology 72:886–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JH, Ginovart N, Boovariwala A et al (2006) Elevated monoamine oxidase A levels in the brain. An explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63(11):1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Michel TM, Frangou S, Camara S et al (2008) Altered glial cell line-derived neurotrophic factor (GDNF) concentrations in the brain of patients with depressive disorder: a comprehensive post-mortem study. Eur Psychiatry 23(6):413–420

    Article  PubMed  Google Scholar 

  • Mickey BJ, Ducci F, Hodgkinson CA, Langenecker SA, Goldman D, Zubieta JK (2008) Monoamine oxidase A genotype predicts human serotonin1A receptor availability in vivo. J Neurosci 28(44):11354–11359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel-Hidalgo JJ, Whittom A, Villarreal A, Soni M, Meshram A, Pickett JC, Rajkowska G, Stockmeier CA (2014) Apoptosis-related proteins and proliferation markers in the orbitofrontal cortex in major depressive disorder. J Affect Disord 158:62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller BR, Hen R (2015) The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol 30:51–58

    Article  CAS  PubMed  Google Scholar 

  • Moffitt TE, Harrington H, Caspi A, Kim-Cohen J, Goldberg D, Gregory AM, Poulton R (2007) Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years. Arch Gen Psychiatry 64(6):651–660

    Article  PubMed  Google Scholar 

  • Moraros J, Kwabkwo C, Patten SB, Mousseau DD (2016) The association of antidepressant drug usage with cognitive impairment or dementia, including Alzheimer disease: a systematic review and meta-analysis. Depress Anxiety. doi:10.1002/da22584

    PubMed  PubMed Central  Google Scholar 

  • Mori M, Murata Y, Matsuo A, Takemoto T, Mine K (2014) Chronic treatment with the 5HT1A receptor partial agonist tandospirone increases hippocampal neurogenesis. Neurol Ther 3:67–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Naoi M, Maruyama W (2010) Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr Pharm Des 16(25):2799–2817

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Inaba-Hasegawa K (2012) Type A and B monoamine oxidase in age-related neurodegenerative disorders: their distinct roles in neuronal death and survival. Curr Top Med Chem 12(20):2177–2188

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Inaba-Hasegawa K (2013) Revelation in neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms. Expert Rev Neurother 13(6):671–684

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Riederer R, Maruyama W (2016) Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm 123(2):91–106

    Article  CAS  PubMed  Google Scholar 

  • Narboux-Neme N, Angenard G, Mosienko V et al (2013) Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chem Neurosci 4(1):171–181

    Article  CAS  PubMed  Google Scholar 

  • Nicotra A, Pierucci F, Parvez H, Senatori O (2004) Monoamine oxidase expression during development and aging. Neurotoxicology 25(1–2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Noto B, Klempin F, Alenina N, Bader M, Fink H, Sander SE (2016) Increased adult neurogenesis in mice with a permanent overexpression of the postsynaptic 5-HT1A receptor. Neurosci Lett 633:246–251

    Article  CAS  PubMed  Google Scholar 

  • Nugent AC, Bain EE, Carlson PJ et al (2013) Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression. Eur Neuropsychopharmacol 23(8):822–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou XM, Chen K, Shih JC (2006) Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Natl Acad Sci USA 103(29):10923–10928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ownby RL, Crocco E, Acevedo A, John V, Loewbstein D (2006) Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 63(5):530–538

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulke A, Nöldner M, Schubert-Zsilavecz M, Wurgkics M (2008) St. John’s wort flavonoids and their metabolites show antidepressant activity and accumulation in brain after multiple oral doses. Pharmazie 63(4):296–302

    CAS  PubMed  Google Scholar 

  • Peters EJ, Slager SL, McGrath PJ, Knowlers JA, Hamilton SP (2004) Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 9(9):879–889

    Article  CAS  PubMed  Google Scholar 

  • Pezawas L, Verchinski BA, Mattay VS et al (2004) The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 24(45):10099–10102

    Article  CAS  PubMed  Google Scholar 

  • Philibert RA, Gunter TD, Beach SRH, Brody GH, Madan A (2008) MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet B Neuropsychiatr Genet 147B(5):565–570

    Article  CAS  PubMed  Google Scholar 

  • Philibert RA, Wenett P, Plume J, Packer H, Brody GH, Beach SRH (2011) Gene environmental interactions with a novel variable monoamine oxidase A transcriptional enhancer are associated with antisocial personal disorders. Biol Psychiatry 87(6):366–371

    Article  Google Scholar 

  • Radley JJ, Jacobs BL (2002) 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res 955(1–2):264–267

    Article  CAS  PubMed  Google Scholar 

  • Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neurosci 125(1):1–6

    Article  CAS  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Dubey P, Stockmeier CA, Krishnan KRR (2005) Prominent reduction in pyramidal neurons density in the orbitofrontal cortex of elderly depressed patients. Biol Psychiatry 58(4):297–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Rebsam A, Seif I, Gaspar P (2002) Refinement of thalamicortical arbors and mergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 22(19):8541–8552

    CAS  PubMed  Google Scholar 

  • Reijnders JS, Ehrt U, Weber WE, Aarsland D, Leentjens FG (2008) A systemic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 23(2):183–189

    Article  PubMed  Google Scholar 

  • Richard IH, Kurlan R (1997) A survey of antidepressant drug use in Parkinson’s disease. Parkinson Study Group. Neurology 49(1):1167–1170

    Google Scholar 

  • Richard IH, McDermott MP, Kurlan R et al (2012) A randomized, double-blind, placebo-controlled trial of antidepressants in Parkinson’s disease. Neurology 78(16):1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riederer P, Laux G (2011) MAO-inhibitors in Parkinson’s disease. Exp Neurol 20(1):1–17

    Google Scholar 

  • Riederer P, Müller T (2017) Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin Drug Metab Toxicol 13(2):233–240

    Article  CAS  PubMed  Google Scholar 

  • Rocha FL, Murad MG, Stumpf BP, Hara C, Fuzukawa C (2013) Antidepressants for depression in Parkinson’s disease: systematic review and meta-analysis. J Psychopharmacol 27(5):417–423

    Article  CAS  PubMed  Google Scholar 

  • Rocha TBM, Hutz MH, Salatino-Oliveira A et al (2015) Gene-environment interaction in youth depression: replication of the 5-HTTLPR moderation in a diverse setting. Am J Psychiatry 172(10):978–985

    Article  PubMed  Google Scholar 

  • Roth M, Mountjoy CQ, Amrein R (1996) Moclobemide in elderly patients with cognitive decline and depression: an international double-blind, placebo-controlled trial. Br J Psychiatry 168(2):149–157

    Article  CAS  PubMed  Google Scholar 

  • Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • Sacher J, Neumann J, Füfstück T, Soliman A, Villringer A, Schroeter ML (2012) Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord 140(2):142–148

    Article  PubMed  Google Scholar 

  • Sairanen M, Lucas G, Ernfors P, Castren M, Castrn E (2005) Brain-derived neurotrophic factor and antidepressant drug have different, but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25(5):1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Salichon N, Gaspar P, Uoton AL et al (2001) Excess activation of serotonin (5-HT) 1B receptor disrupts the formation of sensory maps in monoamine oxidase and 5-ht knock-out mice. J Neurosci 21(3):884–896

    CAS  PubMed  Google Scholar 

  • Sanchez-Villegas A, Delgado-Rodriguez M, Alonso A, Schlatter J, Lahortiga F, Majem LS, Martinez-Gonzalez MA (2009) Association of the Mediterranean dietary pattern with the incidence of depression. Arch Gen Psychiatry 66(10):1090–1098

    Article  PubMed  Google Scholar 

  • Sapolsky RM (2000) The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 48(8):755–765

    Article  CAS  PubMed  Google Scholar 

  • Savitz J, Lucki I, Drevets EC (2009) 5-HT1A receptor function in major depressive disorder. Prog Neurobiol 88(1):17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt HD, Shelton RC, Duman RS (2011) Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 36(12):2375–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneck N, Miller JM, Delorenzo C, Kikuchi T, Sublette ME, Oquendo MA, Mann JJ, Parsey RV (2016) Relationship of the serotonin transporter polymorphism (5-HTTLPR) genotype and serotonin transporter binding to neural processing of negative emotional stimuli. J Affect Disord 190:494–498

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Antonin KH, Hoffman E, Jedrychowski M, Nilsson E, Schck C, Bieck PR (1989) Tyramine kinetics and pressor sensitivity during monoamine oxidase inhibition by selegiline. Clin Pharmacol Ther 46:528–536

    Article  CAS  PubMed  Google Scholar 

  • Sharma AN, da Costa e Silva BFB, Soares JC, Carvalho AF, Quevedo J (2016) Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: a comprehensive review of human studies. J Affect Dis 197(1):9–20

  • Shih JC, Thompson RF (1999) Monoamine oxidase in neuropsychiatry and behavior. Am J Hum Genet 14(3):593–598

    Article  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih JC, Boyang J, Chen K (2011) Transcriptional regulation and multiple functions of MAO genes. J Neural Transm 118(7):979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman KL, Herrmann N, Walker SE (2013) Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs 27(10):789–797

    Article  CAS  PubMed  Google Scholar 

  • Shumay E, Fowler JS (2010) Identification and characterization of putative methylation targets in the MAOA locus using bioinformatic approaches. Epigenetics 5(4):325–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumay E, Logan J, Volkow ND, Fowler JS (2012) Evidence that the methylation state of the monoamine oxidase A (MAOA) gene predicts brain activity of MAOA enzyme in healthy men. Epigenetics 7(10):1151–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KR, Eyal E, Weintraub D, Investigators ADAGIO (2015) Combined rasagiline and antidepressant use in Parkinson disease in the ADAGIO study: effects on nonmotor symptoms and tolerability. JAMA Neurol 72(1):88–95

    Article  PubMed  Google Scholar 

  • Soliman A, Udemgba C, Fan J et al (2012) Convergent effects of acute stress and glucocorticoid exposure upon MAO-A in humans. J Neurosci 32(48):17120–17127

    Article  CAS  PubMed  Google Scholar 

  • Spalding KL, Baergmann O, Alkass K et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steckler T, Rammes G, Sauvage M, van Gaalen MM, Weis C, Zieggänsberger W, Holsboer F (2001) Effects of the monoamine oxidase A inhibitor moclobemide on hippocampal plasticity in GR-impaired transgenic mice. J Psychiatr Res 35(1):35–42

    Article  Google Scholar 

  • Stockmeier CA (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37(5):357–373

    Article  PubMed  Google Scholar 

  • Suri D, Teixeira CM, Cagliostro MKC, Mahadevia D, Ansorge MS (2015) Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 40:88–112

    Article  PubMed  Google Scholar 

  • Tardito D, Perez J, Tiraboschi E, Musazzi L, Racagni G, Popoli M (2006) Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol Rev 58(1):115–134

    Article  CAS  PubMed  Google Scholar 

  • Toker L, Amar S, Bersudsky Y, Benjamin J, Klein E, Agam G (2010) The biology of tryptophan depletion and mood disorders. Isr J Psychiatry Relat Sci 47(1):45–55

    Google Scholar 

  • Verney C, Lebrand C, Gaspar P (2002) Changing distribution of monoaminergic markers n the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat Rec 267(2):87–93

    Article  PubMed  Google Scholar 

  • Vina D, Serra S, Lamela M, Delogu G (2012) Herbal natural products as a source of monoamine oxidase inhibitors: a review. Curr Topics Med Chem 12(20):2131–2144

    Article  CAS  Google Scholar 

  • Weder N, Xhang H, Jensen K et al (2014) Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and bran circuitry. J Am Acad Child Adolesc Psychiatry 53(4): 417–424 e5

  • Wilcock GK, Birks J, Whitehead A, Evans JG (2002) The effect of selegiline in the treatment of people with Alzheimer’s disease: a meta-analysis of published trials. Int J Geriatr Psychiatry 17(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Wu YH, Fischer DF, Swaab DF (2007) A promoter polymorphism in the monoamine oxidase A gene is associated with the pineal MAOA activity in Alzheimer’s disease. Brain Res 1167:13–19

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Kazumura K, Maruyama W, Osawa T, Naoi M (2015) Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel antiapoptotic function for neuroprotection. J Neural Transm 122(10):1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Youdim MBH, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  CAS  PubMed  Google Scholar 

  • Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW (2005) Association study of a monoamine oxidase A gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropharmacol 39(9):1719–1723

    Google Scholar 

  • Zeni ALB, Zomkowski ADE, Maraschim M, Rodrigues ALS, Tasca CI (2012) Involvement of PKA, CaMKII, PKC, MAPK/ERK and PI3K in the acute antidepressant-like effect of ferulic acid in the tail suspension test. Pharmacol Biochem Behav 103(2):181–186

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naoi.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests in relation to the work described.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naoi, M., Maruyama, W. & Shamoto-Nagai, M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm 125, 53–66 (2018). https://doi.org/10.1007/s00702-017-1709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1709-8

Keywords

Navigation