Skip to main content
Log in

Loss and remodeling of striatal dendritic spines in Parkinson’s disease: from homeostasis to maladaptive plasticity?

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

In Parkinson’s disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), i.e., a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses. Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission. On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state. There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of l-DOPA-induced dyskinesia. Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of l-DOPA-induced dyskinesia. In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander G, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Anglade P, Mouatt-Prigent A, Agid Y, Hirsch E (1996) Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration 5:121–128

    Article  CAS  PubMed  Google Scholar 

  • Aymerich MS, Barroso-Chinea P, Perez-Manso M, Munoz-Patino AM, Moreno-Igoa M, Gonzalez-Hernandez T, Lanciego JL (2006) Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats. Eur J Neurosci 23:2099–2108

    Article  CAS  PubMed  Google Scholar 

  • Azdad K, Chavez M, Don Bischop P, Wetzelaer P, Marescau B, De Deyn PP, Gall D, Schiffmann SN (2009) Homeostatic plasticity of striatal neurons intrinsic excitability following dopamine depletion. PLoS One 4:e6908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  CAS  PubMed  Google Scholar 

  • Bernacer J, Prensa L, Gimenez-Amaya JM (2005) Morphological features, distribution and compartmental organization of the nicotinamide adenine dinucleotide phosphate reduced-diaphorase interneurons in the human striatum. J Comp Neurol 489:311–327

    Article  PubMed  Google Scholar 

  • Bernacer J, Prensa L, Gimenez-Amaya JM (2007) Cholinergic interneurons are differentially distributed in the human striatum. PLoS One 2:e1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernacer J, Prensa L, Gimenez-Amaya JM (2012) Distribution of GABAergic interneurons and dopaminergic cells in the functional territories of the human striatum. PLoS One 7:e30504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betarbet R, Turner R, Chockkan V, DeLong MR, Allers KA, Walters J, Levey AI, Greenamyre JT (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17:6761–6768

    CAS  PubMed  Google Scholar 

  • Blanco-Suarez E, Caldwell AL, Alle NJ (2016) Role of astrocyte-synapse interactions in CNS disorders. J Physiol. doi:10.1113/JP270988

    PubMed  Google Scholar 

  • Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buard I, Steinmetz CC, Claudepierre T, Pfrieger FW (2010) Glial cells promote dendrite formation and the reception of synaptic input in Purkinje cells from postnatal mice. Glia 58:538–545

    PubMed  Google Scholar 

  • Cajal SR (1888) Estructura de los centros nerviosos de las aves. Rev Trim Histol Norm Pat 1:1–10

    Google Scholar 

  • Cajal SR (1891) Sur la structure de l’ecorce cerebrale de quelques mammiferes. La Cellule 7:125–176

    Google Scholar 

  • Cajal SR (1893) Neue darstellung vom histologischen bau des centralnervensystem. Arch Anat Enwick 1893:319–428

    Google Scholar 

  • Cajal SR (1896) Las espinas colaterales de las celulas del cerebro tenidas por el azul. Rev Trimest Micrograf 1:123–136

    Google Scholar 

  • Calabresi P, Mercuri NB, Sancesario G, Bernardi G (1993) Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson’s disease. Brain 116:433–452

    Article  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219

    Article  CAS  PubMed  Google Scholar 

  • Cali C, Baghabra J, Boges DJ, Holst GR, Kreshuk A, Hamprecht FA, Srinivasan M, Lehvaslaiho H, Magistretti PJ (2016) Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues. J Comp Neurol 524:23–38

    Article  CAS  PubMed  Google Scholar 

  • Charron G, Doudnikoff E, Canron MH, Li Q, Vega C, Marais S, Baufreton J, Vital A, Oliet SH, Bezard E (2014) Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology? Front Aging Neurosci 6:258. doi:10.3389/fnagi.2014.00258

    Article  PubMed  PubMed Central  Google Scholar 

  • Chase TN, Oh JD, Blanchet PJ (1998) Neostriatal mechanisms in Parkinson’s disease. Neurology 5:S30–S35

    Article  Google Scholar 

  • Darmopil S, Martin AB, DeDiego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits l-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66:603–613

    Article  CAS  PubMed  Google Scholar 

  • Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E, Sun Z, Sampson AR, Mugnaini E, Deutch AY, Sesack SR, Arbuthnott GW, Surmeier DJ (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:S251–S259

    Article  CAS  Google Scholar 

  • Day M, Wokosin D, Plotkin JL, Tian X, Surmeier DJ (2008) Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci 28:11603–11614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFelipe J (2008) The neuroanatomist’s dream, the problems and solutions, and the ultimate aim. Front Neurosci 2:10–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Deffains M, Iskhakova L, Katabi S, Haber SN, Israel Z, Bergman H (2016) Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. Elife 5:e16443

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  • DeLong M, Wichmann T (2010) Changing views of basal ganglia circuits and circuit disorders. Clin EEG Neurosci 41:61–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Dervan AG, Meshul CK, Beales M, McBean GJ, Moore C, Totterdell S, Snyder AK, Meredith GE (2004) Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson’s disease. Exp Neurol 190:145–156

    Article  CAS  PubMed  Google Scholar 

  • Deutch AY (2014) The thorny problem of dyskinesias: dendritic spines, synaptic plasticity, and striatal dysfunction. Biol Psychiatry 75:676–677

    Article  PubMed  PubMed Central  Google Scholar 

  • Deutch AY, Colbran RJ, Winder DJ (2007) Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism. Parkinsonism Relat Disord 13(Suppl 3):S251–S258

    Article  PubMed  PubMed Central  Google Scholar 

  • Espadas I, Darmopil S, Vergano-Vera E, Ortiz O, Oliva I, Vicario-Abejon C, Martin ED, Moratalla R (2012) l-DOPA-induced increase in TH-immunoreactivite striatal neurons in parkinsonian mice:insights into regulation and function. Neurobiol Dis 48:271–281

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. J Microsc 218:52–61

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39:29–54

    Article  PubMed  Google Scholar 

  • Fieblinger T, Cenci MA (2015) Zooming in on the small: the plasticity of striatal dendritic spines in l-DOPA-induced dyskinesia. Mov Disord 30:484–493

    Article  CAS  PubMed  Google Scholar 

  • Fieblinger T, Graves SM, Sebel LE, Alcacer C, Plotkin JL, Gertler TS, Chan CS, Heiman M, Greengard P, Cenci MA, Surmeier DJ (2014) Cell type-specific plasticity of striatal projection neurons in parkinsonism and l-DOPA-induced dyskinesia. Nat Commun 5:5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentini C, Savoia P, Bono F, Tallarico P, Missale C (2015) The D3 dopamine receptor: from structural interactions to function. Eur Neuropsychopharmacol 25:1462–1469

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:1189–1215

    Article  CAS  PubMed  Google Scholar 

  • Freyaldenhoven TE, Ali SF, Schmued LC (1997) Systemic administration of MPTP induces thalamic neuronal degeneration in mice. Brain Res 759:9–17

    Article  CAS  PubMed  Google Scholar 

  • Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN (2002) Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110:257–275

    Article  CAS  PubMed  Google Scholar 

  • Gagnon D, Petryszyn S, Sanchez MG, Bories C, Beaulieu JM, De Koninck Y, Parent A, Parent M (2017) Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 7:41432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvan A, Smith Y (2011) The primate thalamostriatal systems: anatomical organization, functional roles and possible involvement in Parkinson’s disease. Basal Ganglia 1:179–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Galvan A, Villalba RM, Wichmann T, Smith Y (2016) The thalamostriatal system in normal and diseased states. In: Steiner HZ, Tseng K-Y (eds) Handbook of basal ganglia structure and function, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Garcia BG, Neely MD, Deutch AY (2010) Cortical regulation of striatal medium spiny neuron dendritic remodeling in parkinsonism: modulation of glutamate release reverses dopamine depletion-induced dendritic spine loss. Cereb Cortex 20:2423–2432

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cabezas MA, Martinez-Sanchez P, Sanchez-Gonzalez MA, Garzon M, Cavada C (2009) Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex 19:424–434

    Article  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28:10814–10824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorayeb I, Fernagut PO, Hervier L, Labattu B, Bioulac B, Tison F (2002) A ‘single toxin-double lesion’ rat model of striatonigral degeneration by intrastriatal 1-methyl-4-phenylpyridinium ion injection: a motor behavioural analysis. Neuroscience 115:533–546

    Article  CAS  PubMed  Google Scholar 

  • Gonzales KK, Smith Y (2015) Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 1349:1–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311

    Article  CAS  PubMed  Google Scholar 

  • Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593

    Article  CAS  PubMed  Google Scholar 

  • Gubellin P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agro A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22:6900–6907

    Google Scholar 

  • Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867

    CAS  PubMed  Google Scholar 

  • Halliday GM (2009) Thalamic changes in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S152–S155

    Article  PubMed  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  CAS  PubMed  Google Scholar 

  • Harris KM, Perry E, Bourne J, Feinberg M, Ostroff L, Hurlburt J (2006) Uniform serial sectioning for transmission electron microscopy. J Neurosci 26:12101–12103

    Article  CAS  PubMed  Google Scholar 

  • Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci 33:4804–4814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63:2133–2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000a) Degeneration of the centre median-parafascicular complex in Parkinson’s disease. Ann Neurol 47:345–352

    Article  CAS  PubMed  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000b) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123:1410–1421

    Article  PubMed  Google Scholar 

  • Henderson JM, Schleimer SB, Allbutt H, Dabholkar V, Abel D, Jovic J, Quinlivan M (2005) Behavioural effects of parafascicular thalamic lesions in an animal model of parkinsonism. Behav Brain Res 162:222–232

    Article  CAS  PubMed  Google Scholar 

  • Henning J, Strauss U, Wree A, Gimsa J, Rolfs A, Benecke R, Gimsa U (2008) Differential astroglial activation in 6-hydroxydopamine models of Parkinson’s disease. Neurosci Res 62:246–253

    Article  CAS  PubMed  Google Scholar 

  • Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP, Ince E, Yi H, Levey AI (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15:5222–5237

    CAS  PubMed  Google Scholar 

  • Huerta-Ocampo I, Mena-Segovia J, Bolam JP (2014) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct 219:1787–1800

    Article  PubMed  Google Scholar 

  • Ingham CA, Hood SH, Arbuthnott GW (1989) Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res 503:334–338

    Article  CAS  PubMed  Google Scholar 

  • Ingham CA, Hood SH, Vanmaldegem B, Weenink A, Arbuthnott GW (1993) Morphological-changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp Brain Res 93:17–27

    Article  CAS  PubMed  Google Scholar 

  • Ingham CA, Hood SH, Taggart P, Arbuthnott GW (1998) Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J Neurosci 18:4732–4743

    CAS  PubMed  Google Scholar 

  • Kashani A, Betancur C, Giros B, Hirsch E, El Mestikawy S (2007) Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging 28:568–578

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10:3421–3438

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535

    Article  CAS  PubMed  Google Scholar 

  • Kemp JM, Powell TP (1971a) The site of termination of afferent fibres in the caudate nucleus. Philos Trans R Soc Lond B Biol Sci 262:413–427

    Article  CAS  PubMed  Google Scholar 

  • Kemp JM, Powell TP (1971b) The synaptic organization of the caudate nucleus. Philos Trans R Soc Lond B Biol Sci 262:403–412

    Article  CAS  PubMed  Google Scholar 

  • Kemp JM, Powell TP (1971c) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond B Biol Sci 262:429–439

    Article  CAS  PubMed  Google Scholar 

  • Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–147

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusnoor SV, Bubser M, Deutch AY (2012) The effects of nigrostriatal dopamine depletion on the thalamic parafascicular nucleus. Brain Res 1446:46–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciego JL, Gonzalo N, Castle M, Sanchez-Escobar C, Aymerich MS, Obeso JA (2004) Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. Eur J Neurosci 19:1267–1277

    Article  PubMed  Google Scholar 

  • Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2:a009621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei W, Jiao Y, Del Mar N, Reiner A (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24:8289–8299

    Article  CAS  PubMed  Google Scholar 

  • Lei W, Deng Y, Liu B, Mu S, Guley NM, Wong T, Reiner A (2013) Confocal laser scanning microscopy and ultrastructural study of VGLUT2 thalamic input to striatal projection neurons in rats. J Comp Neurol 521:1354–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang L, DeLong MR, Papa SM (2008) Inversion of dopamine responses in striatal medium spiny neurons and involuntary movements. J Neurosci 28:7537–7547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin R, Bajo-Graneras R, Moratalla R, Perea G, Araque A (2015) Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349:730–734

    Article  CAS  PubMed  Google Scholar 

  • Mazloom M, Smith Y (2006) Synaptic microcircuitry of tyrosine hydroxylase-containing neurons and terminals in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Comp Neurol 495:453–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGeorge AJ, Faull RL (1987) The organization and collateralization of corticostriate neurones in the motor and sensory cortex of the rat brain. Brain Res 423:318–324

    Article  CAS  PubMed  Google Scholar 

  • McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    Article  CAS  PubMed  Google Scholar 

  • McNeill TH, Brown SA, Rafols JA, Shoulson I (1988) Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res 455:148–152

    Article  CAS  PubMed  Google Scholar 

  • Merchan-Perez A, Rodriguez JR, Alonso-Nanclares L, Schertel A, Defelipe J (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:8. doi:10.3389/neuro.05.018.2009

    Article  Google Scholar 

  • Meshul CK, Emre N, Nakamura CM, Allen C, Donohue MK, Buckman JF (1999) Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 88:1–16

    Article  CAS  PubMed  Google Scholar 

  • Meshul CK, Cogen JP, Cheng HW, Moore C, Krentz L, McNeill TH (2000) Alterations in rat striatal glutamate synapses following a lesion of the cortico- and/or nigrostriatal pathway. Exp Neurol 165:191–206

    Article  CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  • Moratalla R, Solis O, Suarez LM (2016) Morphological plasticity in the striatum associated with dopamine dysfunction. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, 2nd edn. Elsewier Academic Press, London, Oxford, UK, and San Diego, Cambridge, USA, pp 755–770

    Google Scholar 

  • Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28:11221–11230

    Article  CAS  PubMed  Google Scholar 

  • Murer MG, Moratalla R (2011) Striatal signaling in l-DOPA-induced dyskinesia: common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation. Front Neuroanat 5:51. doi:10.3389/fnana.2011.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, Ikeuchi Y, Hasegawa N (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117

    Article  PubMed  Google Scholar 

  • Neely MD, Schmidt DE, Deutch AY (2007) Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons. Neuroscience 149:457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    Article  CAS  PubMed  Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 366:580–599

    Article  CAS  PubMed  Google Scholar 

  • Oorschot D (2013) The percentage of interneurons in the dorsal striatum of the rat, cat, monkey and human: a critique of the evidence. Basal Ganglia 3:19–24

    Article  Google Scholar 

  • Papa SM, Chase TN (1996) Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol 39:574–578

    Article  CAS  PubMed  Google Scholar 

  • Papa SM, Wichmann T (2015) Interaction between hyperdirect and indirect basal ganglia pathways. Mov Disord 30:909. doi:10.1002/mds.26273

    Article  PubMed  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154

    Article  CAS  PubMed  Google Scholar 

  • Parker PR, Lalive AL, Kreitzer AC (2016) Pathway-specific remodeling of thalamostriatal synapses in parkinsonian mice. Neuron 89:734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasik P, Pasik T, Hamori J (1976) Synapses between interneurons in the lateral geniculate nucleus of monkeys. Exp Brain Res 25:1–13

    Article  CAS  PubMed  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63:39–46

    Article  CAS  PubMed  Google Scholar 

  • Picconi B, Centonze D, Rossi S, Bernardi G, Calabresi P (2004) Therapeutic doses of l-DOPA reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain 127:1661–1669

    Article  PubMed  Google Scholar 

  • Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572

    Article  CAS  PubMed  Google Scholar 

  • Potts LF, Wu H, Singh A, Marcilla I, Luquin MR, Papa SM (2014) Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol 256:133–143

    Article  CAS  PubMed  Google Scholar 

  • Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658

    Article  PubMed  Google Scholar 

  • Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain Res Rev 63:11–25

    Article  PubMed  Google Scholar 

  • Rivera A, Alberti I, Martin AB, Narvaez JA, de la Calle A, Moratalla R (2002) Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype. Eur J Neurosci 16:2049–2058

    Article  PubMed  Google Scholar 

  • Rivera A, Trias S, Penafiel A, Angel Narvaez J, Diaz-Cabiale Z, Moratalla R, de la Calle A (2003) Expression of D4 dopamine receptors in striatonigral and striatopallidal neurons in the rat striatum. Brain Res 989:35–41

    Article  CAS  PubMed  Google Scholar 

  • Roberts RC, Gaither LA, Peretti FJ, Lapidus B, Chute DJ (1996) Synaptic organization of the human striatum: a postmortem ultrastructural study. J Comp Neurol 374:523–534

    Article  CAS  PubMed  Google Scholar 

  • Rommelfanger KS, Wichmann T (2010) Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 4:139. doi:10.3389/fnana.2010.00139

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-DeDiego I, Naranjo JR, Herve D, Moratalla R (2015) Dopaminergic regulation of olfactory type G-protein α subunit expression in the striatum. Mov Disord 30:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-DeDiego I, Mellstrom B, Vallejo M, Naranjo JR, Moratalla R (2016) Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces l-DOPA-induced dyskinesias in mice. Biol Psychiatry 77:95–100

    Article  CAS  Google Scholar 

  • Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–257

    Article  CAS  PubMed  Google Scholar 

  • Scholz B, Svensson M, Alm H, Skold K, Falth M, Kultima K, Guigoni C, Doudnikoff E, Li Q, Crossman AR, Bezard E, Andren PE (2008) Striatal proteomic analysis suggests that first l-DOPA dose equates to chronic exposure. PLoS One 3:e1589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuster S, Doudnikoff E, Rylander D, Berthet A, Aubert I, Ittrich C, Bloch B, Cenci MA, Surmeier DJ, Hengerer B, Bezard E (2009) Antagonizing l-type Ca2+ channel reduces development of abnormal involuntary movement in the rat model of l-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry 65:518–526

    Article  CAS  PubMed  Google Scholar 

  • Sedaghat K, Finkelstein DI, Gundlach AL (2009) Effect of unilateral lesion of the nigrostriatal dopamine pathway on survival and neurochemistry of parafascicular nucleus neurons in the rat—evaluation of time-course and LGR8 expression. Brain Res 1271:83–94

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidibe M, Smith Y (1999) Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins. Neuroscience 89:1189–1208

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Liang L, Kaneoke Y, Cao X, Papa SM (2015) Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates. J Neurophysiol 113:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Mewes K, Gross RE, DeLong MR, Obeso JA, Papa SM (2016) Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson’s disease. Proc Natl Acad Sci USA 113:9629–9634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23(Suppl 10):S28–S33

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(Suppl 3):S534–S547

    Article  PubMed  Google Scholar 

  • Smith Y, Wichmann T (2015) The cortico-pallidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord 30:293–295

    Article  PubMed  Google Scholar 

  • Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344:1–19

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Shink E, Sidibe M (1998) Neuronal circuitry and synaptic connectivity of the basal ganglia. Neurosurg Clin N Am 9:203–222

    CAS  PubMed  Google Scholar 

  • Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Raju D, Nanda B, Pare JF, Galvan A, Wichmann T (2009a) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Villalba RM, Raju DV (2009b) Striatal spine plasticity in Parkinson’s disease: pathological or not? Parkinsonism Relat Disord 15(Suppl 3):S156–S161

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Galvan A, Ellender TJ, Doig N, Villalba RM, Huerta-Ocampo I, Wichmann T, Bolam JP (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci 8:5. doi:10.3389/fnsys.2014.00005

    PubMed  PubMed Central  Google Scholar 

  • Smith Y, Villalba R, Galvan A (2016) The thalamostriatal system and cognition. In: Soghomonian J-J (ed) The basal ganglia, innovations in cognitive neuroscience. Springer, Switzerland, pp 69–85

    Google Scholar 

  • Soderstrom KE, O’Malley JA, Levine ND, Sortwell CE, Collier TJ, Steece-Collier K (2010) Impact of dendritic spine preservation in medium spiny neurons on dopamine graft efficacy and the expression of dyskinesias in parkinsonian rats. Eur J Neurosci 31:478–490

    Article  PubMed  PubMed Central  Google Scholar 

  • Solis O, Limon DI, Flores-Hernandez J, Flores G (2007) Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson’s disease. Synapse 61:450–458

    Article  CAS  PubMed  Google Scholar 

  • Solis O, Espadas I, Del-Bel EA, Moratalla R (2015) Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(−/−) aphakia mice. Neurobiol Dis 73:49–59

    Article  CAS  PubMed  Google Scholar 

  • Solis O, Garcia-Sanz P, Herranz AS, Asensio MJ, Moratalla R (2016) l-DOPA reverses the increased free amino acids tissue levels induced by dopamine depletion and rises GABA and tyrosine in the striatum. Neurotox Res 30:67–75

    Article  CAS  PubMed  Google Scholar 

  • Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17:190–203

    CAS  PubMed  Google Scholar 

  • Stephens B, Mueller AJ, Shering AF, Hood SH, Taggart P, Arbuthnott GW, Bell JE, Kilford L, Kingsbury AE, Daniel SE, Ingham CA (2005) Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience 132:741–754

    Article  CAS  PubMed  Google Scholar 

  • Suarez LM, Solis O, Carames JM, Taravini IR, Solis JM, Murer MG, Moratalla R (2014) l-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice. Biol Psychiatry 75:711–722

    Article  CAS  PubMed  Google Scholar 

  • Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R (2016) l-DOPA oppositely regulates synaptic strength and spine morphology in D1 and D2 striatal projection neurons in dyskinesia. Cereb Cortex 26:4253–4264

    Article  PubMed  PubMed Central  Google Scholar 

  • Surmeier DJ, Kitai ST (1993) D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog Brain Res 99:309–324

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Shen W, Day M, Gertler T, Chan S, Tian X, Plotkin JL (2010) The role of dopamine in modulating the structure and function of striatal circuits. Prog Brain Res 183:149–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692

    Article  CAS  PubMed  Google Scholar 

  • Tepper JM, Tecuapetla F, Koos T, Ibanez-Sandoval O (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 4:150. doi:10.3389/fnana.2010.00150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88:983–1008

    Article  CAS  PubMed  Google Scholar 

  • Toy WA, Petzinger GM, Leyshon BJ, Akopian GK, Walsh JP, Hoffman MV, Vuckovic MG, Jakowec MW (2014) Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurobiol Dis 63:201–209

    Article  CAS  PubMed  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906

    CAS  PubMed  Google Scholar 

  • Villalba RM, Smith Y (2010) Striatal spine plasticity in Parkinson’s disease. Front Neuroanat 4:133. doi:10.3389/fnana.2010.00133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villalba RM, Smith Y (2011a) Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated parkinsonian monkeys. J Comp Neurol 519:989–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalba RM, Smith Y (2011b) Neuroglial plasticity at striatal glutamatergic synapses in Parkinson’s disease. Front Syst Neurosci 5:68. doi:10.3389/fnsys.2011.00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalba RM, Smith Y (2013) Differential striatal spine pathology in Parkinson’s disease and cocaine addiction: a key role of dopamine? Neuroscience 251:2–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalba RM, Lee H, Smith Y (2009) Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys. Exp Neurol 215:220–227

    Article  CAS  PubMed  Google Scholar 

  • Villalba RM, Wichmann T, Smith Y (2013) Preferential loss of thalamostriatal ove corticostriatal glutamatergic synapses in parkinsonian monkeys. In: Society of Neuroscience annual meeting Abstracts 240.02

  • Villalba RM, Wichmann T, Smith Y (2014) Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219:381–394. doi:10.1007/s00429-013-0507-9

    Article  CAS  PubMed  Google Scholar 

  • Villalba RM, Mathai A, Smith Y (2015) Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease. Front Neuroanat 9:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Villalba RM, Pare JF, Smith Y (2016) Three-dimensional electron microscopy imaging of spines in non-human primates. In: Bocstale EJV (ed) Transmission electron microscopy methods for understanding the brain. Springer Science + Business Media, New York, pp 81–103

    Google Scholar 

  • Wichmann T, DeLong MR (2003) Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci 991:199–213

    Article  CAS  PubMed  Google Scholar 

  • Wichmann T, Delong MR (2007) Anatomy and physiology of the basal ganglia: relevance to Parkinson’s disease and related disorders. Handb Clin Neurol 83:1–18

    Article  PubMed  Google Scholar 

  • Wickens JR, Arbuthnott GW, Shindou T (2007) Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. Prog Brain Res 160:313–329

    Article  CAS  PubMed  Google Scholar 

  • Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23

    Article  PubMed  Google Scholar 

  • Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA (2010) Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia 58:572–587

    PubMed  PubMed Central  Google Scholar 

  • Wu Y, Richard S, Parent A (2000) The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci Res 38:49–62

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, Tonegawa S (1994) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79:729–742

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34

    Article  CAS  PubMed  Google Scholar 

  • Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A, Deutch AY, Montine TJ (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64:545–547

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen K, Baron M, Teylan MA, Kim Y, Song Z, Greengard P, Wong ST (2010) A neurocomputational method for fully automated 3D dendritic spine detection and segmentation of medium-sized spiny neurons. Neuroimage 50:1472–1484

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Meredith GE, Mendoza-Elias N, Rademacher DJ, TsengKY Steece-Collier K (2013) Aberrant restoration of spines and their synapses in l-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses. J Neurosci 33:11655–11667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Jean-Francois Pare and Susan Jenkins for their technical assistance. This work was supported by the NIH Grants R01NS083386 (YS) and P50NS098685 (YS) and the Yerkes Primate Center base Grant P51OD01113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Villalba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalba, R.M., Smith, Y. Loss and remodeling of striatal dendritic spines in Parkinson’s disease: from homeostasis to maladaptive plasticity?. J Neural Transm 125, 431–447 (2018). https://doi.org/10.1007/s00702-017-1735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1735-6

Keywords

Navigation