Skip to main content
Log in

Changes in precipitation extremes over arid to semiarid and subhumid Punjab, Pakistan

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Asymmetrical monsoons during the recent past have resulted into spatially variable and devastating floods in South Asia. Analysis of historic precipitation extremes record may help in formulating mitigation strategies at local level. Eleven indices of precipitation extremes were evaluated using RClimDex and daily time series data for analysis period of 1981–2010 from five representative cities across Punjab province of Pakistan. The indices include consecutive dry days, consecutive wet days, number of days above daily average precipitation, number of days with precipitation ≥10 mm, number of days with precipitation ≥20 mm, very wet days, extremely wet days, simple daily intensity index, maximum 1-day precipitation quantity, maximum 5 consecutive day precipitation quantity, and annual total wet-day precipitation. Mann-Kendall test and Sen’s slope extremes were used to detect trends in indices. Droughts and excessive precipitation were dictated by elevation from mean sea level with prolonged dry spells in southern Punjab and vice versa confirming spatial trends for precipitation extremes. However, no temporal trend was observed for any of the indices. Summer in the region is the wettest season depicting contribution of monsoons during June through August toward devastating floods in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas F (2013) Analysis of a historical (1981–2010) temperature record of Punjab province of Pakistan. Earth Interact. doi:10.1175/2013EI000528.1

  • Aguilar E, Peterson TC, Obando PR, Frutos R, Retana JA, Solera M, Soley J, Garcia IG, Araujo RM, Santos AR, Valle VE, Brunet M, Aguilar L, Alvarez LA, Bautista M, Castanon C, Herrera L, Ruano E, Sinay JJ, Sanchez E, Oviedo GIH, Obed F, Salgado JE, Vazquez JL, Baca M, Gutierrez M, Centella C, Espinosa J, Martinez D, Olmedo B, Espinoza CEO, Nunez R, Haylock M, Benavides H, Mayorga R (2005) Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J Geophys Res 110:1–15

    Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Ambenje P, Rupa-Kumar K, Revadekar J, Griffiths G (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  • Annamalai H, Jan Hafner K, Sooraj P, Pillai P (2013) Global warming shifts the monsoon circulation, drying South Asia. J Clim 26:2701–2718

    Article  Google Scholar 

  • Basit A, Shoaib SR, Irfan N, Avila R (2012) Simulation of monsoon precipitation over South-Asia using RegCM3. ISRN Meteorology 12:754902. doi:10.5402/2012/754902

    Google Scholar 

  • Chu P, Chen YR, Schroeder TA (2010) Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J Clim 23:4881–4900

    Article  Google Scholar 

  • Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland CK (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • FMI (2002) Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann–Kendall Test and Sen’s Slope Estimates: The Excel Template Application MAKESENS. Finnish Meteorological Institute, 2002

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

  • Griffiths ML, Bradley RS (2007) Variations of twentieth century temperature and precipitation extreme indicators in the northeast United States. J Clim 20:5401–5417

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Imhoff M, Lawrence W, Easterling D, Peterson T, Karl T (2001) A closer look at United States and global surface temperature change. J Geophys Res 106:23947–23963

    Article  Google Scholar 

  • Huang B, Nobel PS (1992) Hydraulic conductivity and anatomy of lateral roots of Agave deserti during root growth and drought induced abscission. J Exp Bot 43:1441–1449

    Article  Google Scholar 

  • Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223

    Article  Google Scholar 

  • Karl TR, Easterling DR (1999) Climate extremes: selected review and future research directions. Climate Change 42:309–325

    Article  Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Am Meteorol Soc 79:1107–1119

    Article  Google Scholar 

  • Kendall MG (1955) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kruger AC (2006) Observed trends in daily precipitation indices in South Africa: 1910–2004. Int J Climatol 26(15):2275–2285

    Article  Google Scholar 

  • Klein Tank AMG, Konnen GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  • Landsea CW (1993) A climatology of intense (or major) Atlantic hurricanes. Mon Weather Rev 121:1703–1713

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric test against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Moberg A, Jones PD (2005) Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901-99. Int J Climatol 25:1149–1171

    Article  Google Scholar 

  • Neumann CJ, Jarvinen BR, Pike AC, Elms JD (1987) Tropical Cyclones of the North Atlantic Ocean, 1871–1986. Natl, Environ. Satell. Data and Inf. Serv., p 186

    Google Scholar 

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:1889–1922

    Article  Google Scholar 

  • Peterson TC, Taylor MA, Demeritte R, Duncombe DL, Burton S, Thompson F, Porter A, Mercedes M, Villegas E, Fils RS, Klein Tank A, Martis A, Warner R, Joyette A, Mills W, Alexander L, Gleason B (2002) Recent changes in climate extremes in the Caribbean region. J Geophys Res 107:1–9

    Google Scholar 

  • Peterson TC, Vose RS (1997) An overview of the Global Historical Climatology Network temperature database. Bull Am Meteorol Soc 78:2837–2849

    Article  Google Scholar 

  • Qian WH, Zhu YF, Tang SQ (2011) Reconstructed index of summer monsoon dry–wet modes in East Asia for the last millennium. Chin Sci Bull 56:3019–3027

    Article  Google Scholar 

  • Roy SS, Balling RC Jr (2004) Trends in extreme daily precipitation indices in India. Int J Climatol 24:457–466

    Article  Google Scholar 

  • Safeeq M, Mair A, Fares A (2012) Temporal and spatial trends in air temperature on the Island of Oahu, Hawaii. Int J Climatol. doi:10.1002/joc.3629

  • Salmi T, Maatta A, Anttila P, Ruoho-Airola T, Amnell T (2002) Publications on air quality. No 31. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates. Finnish Meteorological Institute Helsinki, Finland

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climate Change 79:185–211

    Article  Google Scholar 

  • Zhai P, Sun A, Ren F, Liu X, Gao B, Zhang Q (1999) Changes of climate extremes in China. Climate Change 42:203–218

    Article  Google Scholar 

  • Zhang X, Yang F (2004) RClimDex (1.0) User Guide: Climate Research Branch Environment Canada (2004)

  • Zhang X, Hegerl G, Zwiers FW, Kenyon J (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim 18:1641–1651

    Article  Google Scholar 

Download references

Acknowledgments

Funds for this research were provided by the Higher Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhat Abbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, F., Ahmad, A., Safeeq, M. et al. Changes in precipitation extremes over arid to semiarid and subhumid Punjab, Pakistan. Theor Appl Climatol 116, 671–680 (2014). https://doi.org/10.1007/s00704-013-0988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0988-8

Keywords

Navigation