Skip to main content

Advertisement

Log in

Herpes simplex virus type 1 modulates cellular gene expression during quiescent infection of neuronal cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Gene expression profiling of neuronally-differentiated (ND)-PC12 cells quiescently infected (QIF) with herpes simplex virus type 1 (HSV-1) was performed to determine the response of neuronal cells to long-term maintenance of a non-replicating viral genome independent of the heterogeneous response that occurs in latently infected ganglia. Quiescent infections were characterized by 606 up-regulated and 821 down-regulated cellular genes (P < 0.005) compared to parallel, identically treated, mock-infected cultures. Gene ontology analyses suggested that up-regulated cellular genes were involved in steroid biosynthesis and mitogen-activated protein kinase signaling pathways and significantly overrepresented for transcription factor and transcription regulatory functions. Many of the most up-regulated cellular genes encode for proteolytic enzymes involved in neurite outgrowth/axon remodeling. Genes involved in DNA and nucleotide metabolism and apoptosis tended to be down-regulated. These findings demonstrate that a quiescent HSV-1 infection significantly alters neuronal gene expression in ways that may promote survival of the host cell and maintenance of latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stevens JG, L Haarr, Porter DD, Cook ML, Wagner EK (1988) Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. J Infect Dis 158:117–123

    PubMed  CAS  Google Scholar 

  2. Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus α gene mRNA is prominent in latently infected neurons. Science 235:1056–1059

    Article  PubMed  CAS  Google Scholar 

  3. Decman V, Freeman ML, Kinchington PR, Hendricks RL (2005) Immune control of HSV-1 latency. Viral Immunol 18:466–473

    Article  PubMed  CAS  Google Scholar 

  4. Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL (2003) Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18:593–603

    Article  PubMed  CAS  Google Scholar 

  5. Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL (2000) CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 191:1459–1466

    Article  PubMed  CAS  Google Scholar 

  6. Shimeld C, Whiteland JL, Nicholls SM, Grinfeld E, Easty DL, Gao H, Hill TJ (1995) Immune cell infiltration and persistence in the mouse trigeminal ganglion after infection of the cornea with herpes simplex virus type 1. J Neuroimmunol 61:7–16

    Article  PubMed  CAS  Google Scholar 

  7. Verjans GM, Hintzen RQ, van Dun JM, Poot A, Milikan JC, Laman JD et al (2007) Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci USA 104:3496–3501

    Article  PubMed  CAS  Google Scholar 

  8. Cook WJ, Kramer MF, Walker RM, Burwell TJ, Holman HA, Coen DM, Knipe DM (2004) Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection. Virol J 1:5

    Article  PubMed  Google Scholar 

  9. Halford WP, Gebhardt BM, Carr DJJ (1996) Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. J Immunol 157:3542–3549

    PubMed  CAS  Google Scholar 

  10. Kent JR, Fraser NW (2005) The cellular response to herpes simplex virus type 1 (HSV-1) during latency and reactivation. J Neurovirol 11:376–383

    Article  PubMed  CAS  Google Scholar 

  11. Kramer MF, Cook WJ, Roth FP, Zhu J, Holman H, Knipe DM, Coen DM (2003) Latent herpes simplex virus infection of sensory neurons alters neuronal gene expression. J Virol 77:9533–9541

    Article  PubMed  CAS  Google Scholar 

  12. Danaher RJ, Jacob RJ, Miller CS (1999) Establishment of a quiescent herpes simplex virus type 1 infection in neurally differentiated PC12 cells. J Neurovirol 5:258–267

    Article  PubMed  CAS  Google Scholar 

  13. Danaher RJ, Jacob RJ, Chorak MD, Freeman CS, Miller CS (1999) Heat stress induces reactivation of herpes simplex virus type 1 infection from quiescently infected neurally differentiated PC12 cells. J Neurovirol 5:374–383

    Article  PubMed  CAS  Google Scholar 

  14. Danaher RJ, Savells-Arb AD, Black SA Jr, Jacob RJ, Miller CS (2001) Herpesvirus quiescence in neuronal cells IV: reactivation induced by pituitary adenylate cyclase activating polypeptide (PACAP) involves the protein kinase A pathway. J Neurovirol 7:163–168

    Article  PubMed  CAS  Google Scholar 

  15. Danaher RJ, Jacob RJ, Steiner MR, Allen WR, Hill JM, Miller CS (2005) Histone deacetylase inhibitors induce herpes simplex virus type 1 reactivation in a latency associated transcript (LAT)-independent manner. J Neurovirol 11:306–317

    Article  PubMed  CAS  Google Scholar 

  16. Danaher RJ, Jacob RJ, Miller CS (2000) Herpesvirus quiescence in neuronal cells: antiviral conditions not required to establish and maintain HSV-2 quiescence. J Neurovirol 6:296–302

    Article  PubMed  CAS  Google Scholar 

  17. Chen XP, Mata M, Kelley M, Glorioso JC, Fink DJ (2002) The relationship of herpes simplex virus latency associated transcript expression to genome copy number: a quantitative study using laser capture microdissection. J Neurovirol 8:204–210

    Article  PubMed  CAS  Google Scholar 

  18. Miller CS, Bhattacharjee PS, Higaki S, Jacob RJ, Danaher RJ, Thompson HW, Hill JM (2003) Herpesvirus quiescence (QIF) in neuronal cells VI: correlative analysis demonstrates usefulness of QIF-PC12 Cells to examine HSV-1 latency and reactivation and deregulated LAT ORF expression. Curr Eye Res 26:239–248

    Article  PubMed  Google Scholar 

  19. Sawtell NM, Poon DK, Tansky CS, Thompson RL (1998) The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72:5343–5350

    PubMed  CAS  Google Scholar 

  20. Thompson RL, Sawtell NM (2006) Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 80:10919–10930

    Article  PubMed  CAS  Google Scholar 

  21. Wang K, Lau TY, Morales M, Mont EK, Straus SE (2005) Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level. J Virol 79:14079–14087

    Article  PubMed  CAS  Google Scholar 

  22. Miller CS, Danaher RJ, Jacob RJ (2006) ICP0 is not required for efficient stress-induced reactivation of herpes simplex virus type 1 from cultured quiescently infected neuronal cells. J Virol 80:3360–3368

    Article  PubMed  CAS  Google Scholar 

  23. Dennis G, Sherman BT Jr, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  24. Medhurst AD, Harrison DC, Read SJ, Campbell CA, Robbins MJ, Pangalos MN (2000) The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. J Neurosci Methods 98:9–20

    Article  PubMed  CAS  Google Scholar 

  25. Aguilar JS, Roy D, Ghazal P, Wagner EK (2002) Dimethyl sulfoxide blocks herpes simplex virus-1 productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis. BMC Infect Dis 2:9

    Article  PubMed  CAS  Google Scholar 

  26. Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR (2005) Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175:4189–4193

    PubMed  CAS  Google Scholar 

  27. Hobbs WE, DeLuca NA (1999) Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 73:8245–8255

    PubMed  CAS  Google Scholar 

  28. Khodarev NN, Advani SJ, Gupta N, Roizman B, Weichselbaum RR (1999) Accumulation of specific RNAs encoding transcriptional factors and stress response proteins against a background of severe depletion of cellular RNAs in cells infected with herpes simplex virus 1. Proc Natl Acad Sci USA 96:12062–12067

    Article  PubMed  CAS  Google Scholar 

  29. Prehaud C, Megret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79:12893–12904

    Article  PubMed  CAS  Google Scholar 

  30. Stingley SW, Ramirez JJ, Auilar SA, Simmen K, Sandri-Goldin RM, Ghazal P, Wagner EK (2000) Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarray. J Virol 74:9916–9927

    Article  PubMed  CAS  Google Scholar 

  31. Ray N, Enquist LW (2004) Transcriptional response of a common permissive cell type to infection by two diverse alphaherpesviruses. J Virol 78:3489–3501

    Article  PubMed  CAS  Google Scholar 

  32. Taddeo B, Esclatine A, Roizman B (2002) The patterns of accumulation of cellular RNAs in cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host shutoff gene. Proc Natl Acad Sci USA 99:17031–17036

    Article  PubMed  CAS  Google Scholar 

  33. Aubert M, Blaho JA (2001) Modulation of apoptosis during herpes simplex virus infection in human cells. Microbes Infect 3:859–866

    Article  PubMed  CAS  Google Scholar 

  34. Higaki S, Deai T, Fukuda M, Shimomura Y (2004) Microarray analysis in the HSV-1 latently infected mouse trigeminal ganglion. Cornea 23:S42–47

    Article  PubMed  Google Scholar 

  35. Higaki S, Gebhardt B, Lukiw W, Thompson H, Hill J (2003) Gene expression profiling in the HSV-1 latently infected mouse trigeminal ganglia following hyperthermic stress. Curr Eye Res 26:231–238

    Article  PubMed  Google Scholar 

  36. Farias-Eisner R, Vician L, Silver A, Reddy S, Rabbani SA, Herschman HR (2000) The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation. J Neurosci 20:230–239

    PubMed  CAS  Google Scholar 

  37. Varanou A, Withington SL, Lakasing L, Williamson C, Burton GJ, Hemberger M (2006) The importance of cysteine cathepsin proteases for placental development. J Mol Med 84:305–317

    Article  PubMed  CAS  Google Scholar 

  38. Yong VW (2005) Metalloproteinases: mediators of pathology, regeneration in the CNS. Nat Rev Neurosci 6:931–944

    Article  PubMed  CAS  Google Scholar 

  39. Nagai M, Sakakibara J, Wakui K, Fukushima Y, Igarashi S, Tsuji S, Arakawa M, Ono T (1997) Localization of the squalene epoxidase gene (SQLE) to human chromosome region 8q24.1. Genomics 44:141–143

    Article  PubMed  CAS  Google Scholar 

  40. Hamza MA, Higgins DM, Feldman LT, Ruyechan WT (2007) The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal neurons. J Neurovirol 13:56–66

    Article  PubMed  CAS  Google Scholar 

  41. Lee SY, Lee JW, Lee H, Yoo HS, Yun YP, Oh KW, Ha TY, Hong JT (2005) Inhibitory effect of green tea extract on beta-amyloid-induced PC12 cell death by inhibition of the activation of NF-kappaB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Brain Res Mol Brain Res 140:45–54

    Article  PubMed  CAS  Google Scholar 

  42. Nishina A, Sekiguchi A, Fukumoto RH, Koketsu M, Furukawa S (2007) Selenazoles (selenium compounds) facilitate survival of cultured rat pheochromocytoma PC12 cells after serum-deprivation and stimulate their neuronal differentiation via activation of Akt and mitogen-activated protein kinase, respectively. Biochem Biophys Res Commun 352:360–365

    Article  PubMed  CAS  Google Scholar 

  43. Tomaselli B, Podhraski V, Heftberger V, Bock G, Baier-Bitterlich G (2005) Purine nucleoside-mediated protection of chemical hypoxia-induced neuronal injuries involves p42/44 MAPK activation. Neurochem Int 26:513–521

    Article  Google Scholar 

  44. Imaizumi K, Tsuda M, Imai Y, Wanaka A, Takagi T, Tohyama M (1997) Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death. J Biol Chem 272:18842–18848

    Article  PubMed  CAS  Google Scholar 

  45. Jiang X, Kim HE, Shu H et al (2003) Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299:223–226

    Article  PubMed  CAS  Google Scholar 

  46. Schlossmann J, Hofmann F (2005) cGMP-dependent protein kinases in drug discovery. Drug Discov Today 10:627–634

    Article  PubMed  CAS  Google Scholar 

  47. Danaher RJ, Jacob RJ, Miller CS (2006) Reactivation from quiescence does not coincide with a global induction of herpes simplex virus type 1 transactivators. Virus Genes 33:163–167

    Article  PubMed  CAS  Google Scholar 

  48. Derfuss T, Segerer S, Herberger S et al (2007) Presence of HSV-1 immediate early genes and clonally expanded T-cells with a memory effector phenotype in human trigeminal ganglia. Brain Pathol 17:389–398

    Article  PubMed  CAS  Google Scholar 

  49. Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P, Margolis TP (2002) Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci USA 99:978–983

    Article  PubMed  CAS  Google Scholar 

  50. Green MT, Courtney RJ, Dunkel EC (1981) Detection of an immediate early herpes simplex virus type 1 polypeptide in trigeminal ganglia from latently infected animals. Infect Immun 34:987–992

    PubMed  CAS  Google Scholar 

  51. Kramer MF, Coen DM (1995) Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol 69:1389–1399

    PubMed  CAS  Google Scholar 

  52. Tal-Singer R, Lasner TM, Podrzucki W, Skokotas A, Leary JJ, Berger SL, Fraser NW (1997) Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue cultures. J Virol 71:5268–5276

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael Killen for providing technical assistance, and Dr. Kevin Becker, Dr. Kuey-Chu Chen, Dr. Robert Jacob, and Dr. Jeff Ebersole for helpful discussions. This research was supported by grants from the National Institute of Health DE014142 (CSM), P20 RR16481 (AJS), and the Microarray Facility Pilot Program at the University of Kentucky (CSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danaher, R.J., McGarrell, B.S., Stromberg, A.J. et al. Herpes simplex virus type 1 modulates cellular gene expression during quiescent infection of neuronal cells. Arch Virol 153, 1335–1345 (2008). https://doi.org/10.1007/s00705-008-0122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0122-x

Keywords

Navigation