Skip to main content

Advertisement

Log in

Involvement of ATP synthase β subunit in chikungunya virus entry into insect cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Chikungunya virus (CHIKV), the virus responsible for the disease chikungunya fever in humans, is transmitted by Aedes mosquitoes. While significant progress has been made in understanding the process by which CHIKV enters into mammalian cells, far less progress has been made in understanding the CHIKV entry process in insect cells. This study sought to identify mosquito-cell-expressed CHIKV-binding proteins through a combination of virus overlay protein binding assays (VOPBA) and mass spectroscopy. A 50-kDa CHIKV-binding protein was identified as the ATP synthase β subunit (ATPSβ). Co-immunoprecipitation studies confirmed the interaction, and colocalization analysis showed cell-surface and intracellular co-localization between CHIKV and ATPSβ. Both antibody inhibition and siRNA-mediated downregulation experiments targeted to ATPSβ showed a significant reduction in viral entry and virus production. These results suggest that ATPSβ is a CHIKV-binding protein capable of mediating the entry of CHIKV into insect cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM, Jadhav SM, Sudeep AB, Mishra AC (2007) Genetic divergence of chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J Gen Virol 88:1967–1976

    Article  CAS  PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Burrell HE, Wlodarski B, Foster BJ, Buckley KA, Sharpe GR, Quayle JM, Simpson AW, Gallagher JA (2005) Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface. J Biol Chem 280:29667–29676

    Article  CAS  PubMed  Google Scholar 

  4. Cavrini F, Gaibani P, Pierro AM, Rossini G, Landini MP, Sambri V (2009) Chikungunya: an emerging and spreading arthropod-borne viral disease. J Infect Dev Countries 3:744–752

    CAS  Google Scholar 

  5. Chee H-Y, AbuBakar S (2004) Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry. Biochem Biophys Res Commun 320:11–17

    Article  CAS  PubMed  Google Scholar 

  6. Collinson IR, Runswick MJ, Buchanan SK, Fearnley IM, Skehel JM, van Raaij MJ, Griffiths DE, Walker JE (1994) Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, and reconstitution with F1-ATPase. Biochemistry 33:7971–7978

    Article  CAS  PubMed  Google Scholar 

  7. Das B, Mondragon MO, Sadeghian M, Hatcher VB, Norin AJ (1994) A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H + transporting ATP synthase on the surface of tumor cell lines. J Exp Med 180:273–281

    Article  CAS  PubMed  Google Scholar 

  8. de Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA (2008) Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol J 5:33

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gould EA, Gallian P, De Lamballerie X, Charrel RN (2010) First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16:1702–1704

    Article  CAS  PubMed  Google Scholar 

  10. Her Z, Kam YW, Lin RT, Ng LF (2009) Chikungunya: a bending reality. Microbes Infect 11:1165–1176

    Article  PubMed  Google Scholar 

  11. Jonckheere AI, Smeitink JA, Rodenburg RJ (2012) Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 35:211–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim BW, Choo HJ, Lee JW, Kim JH, Ko YG (2004) Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp Mol Med 36:476–485

    Article  CAS  PubMed  Google Scholar 

  13. Kuadkitkan A, Wikan N, Fongsaran C, Smith DR (2010) Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells. Virology 406:149–161

    Article  CAS  PubMed  Google Scholar 

  14. Lee RC, Hapuarachchi HC, Chen KC, Hussain KM, Chen H, Low SL, Ng LC, Lin R, Ng MM, Chu JJ (2013) Mosquito cellular factors and functions in mediating the infectious entry of chikungunya virus. PLoS Negl Trop Dis 7:e2050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Leyva JA, Bianchet MA, Amzel LM (2003) Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review). Mol Membr Biol 20:27–33

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG (2010) Structural changes of envelope proteins during alphavirus fusion. Nature 468:705–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Liang Y, Cheng JJ, Yang B, Huang J (2010) The role of F1 ATP synthase beta subunit in WSSV infection in the shrimp, Litopenaeus vannamei. Virol J 7:144

    Article  PubMed Central  PubMed  Google Scholar 

  18. Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezon E, Champagne E, Pineau T, Georgeaud V, Walker JE, Terce F, Collet X, Perret B, Barbaras R (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421:75–79

    Article  CAS  PubMed  Google Scholar 

  19. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV (1999) Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 96:2811–2816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Paingankar MS, Gokhale MD, Deobagkar DN (2010) Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol 155:1453–1461

    Article  CAS  PubMed  Google Scholar 

  21. Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M (2007) Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7:319–327

    Article  PubMed  Google Scholar 

  22. Powers AM, Brault AC, Tesh RB, Weaver SC (2000) Re-emergence of Chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol 81:471–479

    CAS  PubMed  Google Scholar 

  23. Powers AM, Logue CH (2007) Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377

    Article  CAS  PubMed  Google Scholar 

  24. Powers AM (2010) Chikungunya. Clin Lab Med 30:209–219

    Article  PubMed  Google Scholar 

  25. Pulmanausahakul R, Roytrakul S, Auewarakul P, Smith DR (2011) Chikungunya in Southeast Asia: understanding the emergence and finding solutions. Int J Infect Dis 15:671–676

    Article  Google Scholar 

  26. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    Article  CAS  PubMed  Google Scholar 

  27. Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. I. Clinical features. Trans R Soc Trop Med Hyg 49:28–32

    Article  CAS  PubMed  Google Scholar 

  28. Ross RW (1956) The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg (Lond) 54:177–191

    Article  CAS  Google Scholar 

  29. Schwartz O, Albert ML (2010) Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8:491–500

    Article  CAS  PubMed  Google Scholar 

  30. Singh KRP (1967) Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr Sci 36:506–508

    Google Scholar 

  31. Smith DR (2012) An update on mosquito cell expressed dengue virus receptor proteins. Insect Mol Biol 21:1–7

    Article  CAS  PubMed  Google Scholar 

  32. Sudeep AB, Parashar D (2008) Chikungunya: an overview. J Biosci 33:443–449

    Article  CAS  PubMed  Google Scholar 

  33. Tolle MA (2009) Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care 39:97–140

    Article  PubMed  Google Scholar 

  34. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:e201

    Article  PubMed Central  PubMed  Google Scholar 

  35. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq JS, Fontenille D, Schuffenecker I, Despres P, Failloux AB (2007) Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2:e1168

    Article  PubMed Central  PubMed  Google Scholar 

  36. Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA (2010) Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468:709–712

    Article  CAS  PubMed  Google Scholar 

  37. Wikan N, Sakoonwatanyoo P, Ubol S, Yoksan S, Smith DR (2012) Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage. PLoS One 7:e31102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wintachai P, Wikan N, Kuadkitkan A, Jaimipuk T, Ubol S, Pulmanausahakul R, Auewarakul P, Kasinrerk W, Weng WY, Panyasrivanit M, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR (2012) Identification of prohibitin as a chikungunya virus receptor protein. J Med Virol 84:1757–1770

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto K, Shimizu N, Obi S, Kumagaya S, Taketani Y, Kamiya A, Ando J (2007) Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells. Am J Physiol Heart Circ Physiol 293:H1646–H1653

    Article  CAS  PubMed  Google Scholar 

  40. Zhan W, Wang X, Chi Y, Tang X (2013) The VP37-binding protein F1ATP synthase beta subunit involved in WSSV infection in shrimp Litopenaeus vannamei. Fish Shellfish Immunol 34:228–235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative and Mahidol University. C.F. is supported by a Royal Golden Jubilee Scholarship, P.W. is supported by a Thailand Graduate Institute of Science and Technology (TGIST) Ph.D. Scholarship, and N.W. is supported by a TRF and Mahidol University (Thai Royal Golden Jubilee) PhD Scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan R. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fongsaran, C., Jirakanwisal, K., Kuadkitkan, A. et al. Involvement of ATP synthase β subunit in chikungunya virus entry into insect cells. Arch Virol 159, 3353–3364 (2014). https://doi.org/10.1007/s00705-014-2210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2210-4

Keywords

Navigation