Skip to main content

Advertisement

Log in

Three-dimensional structure of foot-and-mouth disease virus and its biological functions

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Foot-and-mouth disease (FMD), an acute, violent, infectious disease of cloven-hoofed animals, remains widespread in most parts of the world. It can lead to a major plague of livestock and an economical catastrophe. Structural studies of FMD virus (FMDV) have greatly contributed to our understanding of the virus life cycle and provided new horizons for the control and eradication of FMDV. To examine host-FMDV interactions and viral pathogenesis from a structural perspective, the structures of viral structural and non-structural proteins are reviewed in the context of their relevance for virus assembly and dissociation, formation of capsid-like particles and virus-receptor complexes, and viral penetration and uncoating. Moreover, possibilities for devising novel antiviral treatments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FMDV:

Foot-and-mouth disease virus

UTR:

Untranslated region

ORF:

Open reading frame

HS:

Heparan sulfate

CTE:

C-terminal extension

HRV:

Human rhinovirus

RTP:

Ribavirin triphosphate

PK:

Pseudoknot

cre :

Cis-acting element replication element

IRES:

Internal ribosome entry site

HSPGs:

Heparan sulfate proteoglycans

ICAM-1:

Intercellular adhesion molecule 1

MIDAS:

Metal ion-dependent adsorption site

References

  1. Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F (1989) The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337:709–716

    CAS  PubMed  Google Scholar 

  2. Agudo R, Ferrer-Orta C, Arias A, de la Higuera I, Perales C, Perez-Luque R, Verdaguer N, Domingo E (2010) A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape. PLoS Pathog 6:e1001072

    PubMed Central  PubMed  Google Scholar 

  3. Allaire M, Chernaia MM, Malcolm BA, James MN (1994) Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76

    PubMed  Google Scholar 

  4. Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, Nicklin MJ, Wimmer E (1987) Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci USA 84:21–25

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Ashcroft AE, Lago H, Macedo JM, Horn WT, Stonehouse NJ, Stockley PG (2005) Engineering thermal stability in RNA phage capsids via disulphide bonds. J Nanosci Nanotechnol 5:2034–2041

    CAS  PubMed  Google Scholar 

  6. Azuma H, Yoneda S (2009) Structure and dynamics of the GH loop of the foot-and-mouth disease virus capsid. J Mol Graph Model 28:278–286

    CAS  PubMed  Google Scholar 

  7. Banerjee R, Dasgupta A (2001) Interaction of picornavirus 2C polypeptide with the viral negative-strand RNA. J Gen Virol 82:2621–2627

    CAS  PubMed  Google Scholar 

  8. Baranowski E, Ruiz-Jarabo CM, Sevilla N, Andreu D, Beck E, Domingo E (2000) Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74:1641–1647

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM (1994) Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci 3:1651–1669

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Beales LP, Holzenburg A, Rowlands DJ (2003) Viral internal ribosome entry site structures segregate into two distinct morphologies. J Virol 77:6574–6579

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Belnap DM, Filman DJ, Trus BL, Cheng N, Booy FP, Conway JF, Curry S, Hiremath CN, Tsang SK, Steven AC, Hogle JM (2000) Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J Virol 74:1342–1354

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Belser JA, Lu X, Szretter KJ, Jin X, Aschenbrenner LM, Lee A, Hawley S, Kim do H, Malakhov MP, Yu M, Fang F, Katz JM (2007) DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection. The Journal of infectious diseases 196:1493–1499

    CAS  PubMed  Google Scholar 

  13. Belsham G, Martinez-Salas E, Sobrino F, Domingo E (2004) Genome organization, translation and replication of foot-and-mouth disease virus RNA. Foot and mouth disease: current perspectives, pp 19–52

  14. Belsham GJ, McInerney GM, Ross-Smith N (2000) Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol 74:272–280

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Belsham GJ (2005) Translation and replication of FMDV RNA. Curr Top Microbiol Immunol 288:43–70

    CAS  PubMed  Google Scholar 

  16. Bentham M, Holmes K, Forrest S, Rowlands DJ, Stonehouse NJ (2012) Formation of higher-order foot-and-mouth disease virus 3D(pol) complexes is dependent on elongation activity. J Virol 86:2371–2374

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Berka U, Khan A, Blaas D, Fuchs R (2009) Human rhinovirus type 2 uncoating at the plasma membrane is not affected by a pH gradient but is affected by the membrane potential. J Virol 83:3778–3787

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Berryman S, Clark S, Monaghan P, Jackson T (2005) Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J Virol 79:8519–8534

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Berryman S, Clark S, Kakker NK, Silk R, Seago J, Wadsworth J, Chamberlain K, Knowles NJ, Jackson T (2013) Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions. J Virol 87:8735–8744

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bienz K, Egger D, Troxler M, Pasamontes L (1990) Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J Virol 64:1156–1163

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Birtley JR, Curry S (2005) Crystallization of foot-and-mouth disease virus 3C protease: surface mutagenesis and a novel crystal-optimization strategy. Acta Crystallogr Sect D Biol Crystallogr 61:646–650

    Google Scholar 

  22. Birtley JR, Knox SR, Jaulent AM, Brick P, Leatherbarrow RJ, Curry S (2005) Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity. J Biol Chem 280:11520–11527

    CAS  PubMed  Google Scholar 

  23. Bjorndahl TC, Andrew LC, Semenchenko V, Wishart DS (2007) NMR solution structures of the apo and peptide-inhibited human rhinovirus 3C protease (Serotype 14): structural and dynamic comparison. Biochemistry 46:12945–12958

    CAS  PubMed  Google Scholar 

  24. Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203–2216

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Brabec M, Baravalle G, Blaas D, Fuchs R (2003) Conformational changes, plasma membrane penetration, and infection by human rhinovirus type 2: role of receptors and low pH. J Virol 77:5370–5377

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Brown F, Cartwright B (1961) Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature 192:1163–1164

    CAS  PubMed  Google Scholar 

  27. Bubeck D, Filman DJ, Cheng N, Steven AC, Hogle JM, Belnap DM (2005) The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol 79:7745–7755

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Burman A, Clark S, Abrescia NG, Fry EE, Stuart DI, Jackson T (2006) Specificity of the VP1 GH loop of foot-and-mouth disease virus for alphav integrins. J Virol 80:9798–9810

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Butan C, Filman DJ, Hogle JM (2014) Cryo-electron microscopy reconstruction shows poliovirus 135S particles poised for membrane interaction and RNA release. J Virol 88:1758–1770

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Cao Y, Lu Z, Sun J, Bai X, Sun P, Bao H, Chen Y, Guo J, Li D, Liu X, Liu Z (2009) Synthesis of empty capsid-like particles of Asia I foot-and-mouth disease virus in insect cells and their immunogenicity in guinea pigs. Veterinary Microbiol 137:10–17

    CAS  Google Scholar 

  31. Cartwright B, Chapman WG, Brown F (1980) Serological and immunological relations between the 146S and 12S particles of foot-and-mouth disease virus. J Gen Virol 50:369–375

    CAS  PubMed  Google Scholar 

  32. Cencic R, Mayer C, Juliano MA, Juliano L, Konrat R, Kontaxis G, Skern T (2007) Investigating the substrate specificity and oligomerisation of the leader protease of foot and mouth disease virus using NMR. J Mol Biol 373:1071–1087

    CAS  PubMed  Google Scholar 

  33. Clarke BE, Sangar DV (1988) Processing and assembly of foot-and-mouth disease virus proteins using subgenomic RNA. J Gen Virol 69(Pt 9):2313–2325

    CAS  PubMed  Google Scholar 

  34. Curry S, Abrams CC, Fry E, Crowther JC, Belsham GJ, Stuart DI, King AM (1995) Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol 69:430–438

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Curry S, Fry E, Blakemore W, Abu-Ghazaleh R, Jackson T, King A, Lea S, Newman J, Rowlands D, Stuart D (1996) Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. Structure 4:135–145

    CAS  PubMed  Google Scholar 

  36. Curry S, Fry E, Blakemore W, Abu-Ghazaleh R, Jackson T, King A, Lea S, Newman J, Stuart D (1997) Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J Virol 71:9743–9752

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Curry S, Roque-Rosell N, Sweeney TR, Zunszain PA, Leatherbarrow RJ (2007) Structural analysis of foot-and-mouth disease virus 3C protease: a viable target for antiviral drugs? Biochem Soc Trans 35:594–598

    CAS  PubMed  Google Scholar 

  38. Curry S, Roque-Rosell N, Zunszain PA, Leatherbarrow RJ (2007) Foot-and-mouth disease virus 3C protease: recent structural and functional insights into an antiviral target. Int J Biochem Cell Biol 39:1–6

    CAS  PubMed  Google Scholar 

  39. de Chassey B, Meyniel-Schicklin L, Aublin-Gex A, Andre P, Lotteau V (2012) New horizons for antiviral drug discovery from virus–host protein interaction networks. Curr Opin Virol 2:606–613

    PubMed  Google Scholar 

  40. de Los Santos T, de Avila Botton S, Weiblen R, Grubman MJ (2006) The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response. J Virol 80:1906–1914

    PubMed Central  Google Scholar 

  41. DeLano W (2002) The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto

  42. Devaney MA, Vakharia VN, Lloyd RE, Ehrenfeld E, Grubman MJ (1988) Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol 62:4407–4409

    CAS  PubMed Central  PubMed  Google Scholar 

  43. DiCara D, Rapisarda C, Sutcliffe JL, Violette SM, Weinreb PH, Hart IR, Howard MJ, Marshall JF (2007) Structure-function analysis of Arg-Gly-Asp helix motifs in alpha v beta 6 integrin ligands. J Biol Chem 282:9657–9665

    CAS  PubMed  Google Scholar 

  44. Dicara D, Burman A, Clark S, Berryman S, Howard MJ, Hart IR, Marshall JF, Jackson T (2008) Foot-and-mouth disease virus forms a highly stable, EDTA-resistant complex with its principal receptor, integrin alphavbeta6: implications for infectiousness. J Virol 82:1537–1546

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Domingo E, Escarmis C, Baranowski E, Ruiz-Jarabo CM, Carrillo E, Nunez JI, Sobrino F (2003) Evolution of foot-and-mouth disease virus. Virus Res 91:47–63

    CAS  PubMed  Google Scholar 

  46. Ellard FM, Drew J, Blakemore WE, Stuart DI, King AM (1999) Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol 80(Pt 8):1911–1918

    CAS  PubMed  Google Scholar 

  47. Fernandez N, Garcia-Sacristan A, Ramajo J, Briones C, Martinez-Salas E (2011) Structural analysis provides insights into the modular organization of picornavirus IRES. Virology 409:251–261

    CAS  PubMed  Google Scholar 

  48. Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem 279:47212–47221

    CAS  PubMed  Google Scholar 

  49. Ferrer-Orta C, Arias A, Agudo R, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2006) The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J 25:880–888

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Ferrer-Orta C, Arias A, Escarmis C, Verdaguer N (2006) A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol 16:27–34

    CAS  PubMed  Google Scholar 

  51. Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2007) Sequential structures provide insights into the fidelity of RNA replication. Proc Natl Acad Sci USA 104:9463–9468

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ferrer-Orta C, Agudo R, Domingo E, Verdaguer N (2009) Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Curr Opin Struct Biol 19:752–758

    CAS  PubMed  Google Scholar 

  53. Ferrer-Orta C, Sierra M, Agudo R, de la Higuera I, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2010) Structure of foot-and-mouth disease virus mutant polymerases with reduced sensitivity to ribavirin. J Virol 84:6188–6199

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Foeger N, Kuehnel E, Cencic R, Skern T (2005) The binding of foot-and-mouth disease virus leader proteinase to eIF4GI involves conserved ionic interactions. FEBS J 272:2602–2611

    CAS  PubMed  Google Scholar 

  55. Fry EE, Lea SM, Jackson T, Newman JW, Ellard FM, Blakemore WE, Abu-Ghazaleh R, Samuel A, King AM, Stuart DI (1999) The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J 18:543–554

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Fry EE, Newman JW, Curry S, Najjam S, Jackson T, Blakemore W, Lea SM, Miller L, Burman A, King AM, Stuart DI (2005) Structure of Foot-and-mouth disease virus serotype A10 61 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. J Gen Virol 86:1909–1920

    CAS  PubMed  Google Scholar 

  57. Fry EE, Stuart DI, Rowlands DJ (2005) The structure of foot-and-mouth disease virus. Curr Top Microbiol Immunol 288:71–101

    CAS  PubMed  Google Scholar 

  58. Fuchs R, Blaas D (2010) Uncoating of human rhinoviruses. Rev Med Virol 20:281–297

    CAS  PubMed  Google Scholar 

  59. Garriga D, Pickl-Herk A, Luque D, Wruss J, Caston JR, Blaas D, Verdaguer N (2012) Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog 8:e1002473

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Glaser W, Cencic R, Skern T (2001) Foot-and-mouth disease virus leader proteinase: involvement of C-terminal residues in self-processing and cleavage of eIF4GI. J Biol Chem 276:35473–35481

    CAS  PubMed  Google Scholar 

  61. Goodwin S, Tuthill TJ, Arias A, Killington RA, Rowlands DJ (2009) Foot-and-mouth disease virus assembly: processing of recombinant capsid precursor by exogenous protease induces self-assembly of pentamers in vitro in a myristoylation-dependent manner. J Virol 83:11275–11282

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Graci JD, Cameron CE (2006) Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol 16:37–48

    CAS  PubMed  Google Scholar 

  63. Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ (2004) Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol 78:3271–3278

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Grubman MJ, Baxt B (2004) Foot-and-mouth disease. Clin Microbiol Rev 17:465–493

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Guarne A, Tormo J, Kirchweger R, Pfistermueller D, Fita I, Skern T (1998) Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17:7469–7479

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Guarne A, Hampoelz B, Glaser W, Carpena X, Tormo J, Fita I, Skern T (2000) Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. J Mol Biol 302:1227–1240

    CAS  PubMed  Google Scholar 

  67. Guex N, Peitsch MC (1996) Swiss-PdbViewer: a fast and easy-to-use PDB viewer for Macintosh and PC. Protein Data Bank Quarterly Newsletter 77

  68. Gullberg M, Muszynski B, Organtini LJ, Ashley RE, Hafenstein SL, Belsham GJ, Polacek C (2013) Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells. J Gen Virol 94:1769–1779

    CAS  PubMed  Google Scholar 

  69. Guo HC, Sun SQ, Jin Y, Yang SL, Wei YQ, Sun DH, Yin SH, Ma JW, Liu ZX, Guo JH, Luo JX, Yin H, Liu XT, Liu DX (2013) Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Veterinary Res 44:48

    CAS  Google Scholar 

  70. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    CAS  PubMed  Google Scholar 

  71. Hendry E, Hatanaka H, Fry E, Smyth M, Tate J, Stanway G, Santti J, Maaronen M, Hyypia T, Stuart D (1999) The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7:1527–1538

    CAS  PubMed  Google Scholar 

  72. Hewat EA, Verdaguer N, Fita I, Blakemore W, Brookes S, King A, Newman J, Domingo E, Mateu MG, Stuart DI (1997) Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO J 16:1492–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Jackson T, Blakemore W, Newman JW, Knowles NJ, Mould AP, Humphries MJ, King AM (2000) Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin alpha5beta1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J Gen Virol 81:1383–1391

    CAS  PubMed  Google Scholar 

  74. Jackson T, Sheppard D, Denyer M, Blakemore W, King AM (2000) The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J Virol 74:4949–4956

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Jackson T, Mould AP, Sheppard D, King AM (2002) Integrin alphavbeta1 is a receptor for foot-and-mouth disease virus. J Virol 76:935–941

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Jackson T, Clark S, Berryman S, Burman A, Cambier S, Mu D, Nishimura S, King AM (2004) Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus: role of the beta-chain cytodomain in integrin-mediated infection. J Virol 78:4533–4540

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Jamal SM, Belsham GJ (2013) Foot-and-mouth disease: past, present and future. Veterinary Res 44:116

    Google Scholar 

  78. Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389:521–536

    CAS  PubMed  Google Scholar 

  79. Johnson JE, Chiu W (2000) Structures of virus and virus-like particles. Curr Opin Struct Biol 10:229–235

    CAS  PubMed  Google Scholar 

  80. Jung S, Schlick T (2013) Candidate RNA structures for domain 3 of the foot-and-mouth-disease virus internal ribosome entry site. Nucleic Acids Res 41:1483–1495

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    CAS  PubMed  Google Scholar 

  82. Klein M, Eggers HJ, Nelsen-Salz B (1999) Echovirus 9 strain barty non-structural protein 2C has NTPase activity. Virus Res 65:155–160

    CAS  PubMed  Google Scholar 

  83. Lea S, Hernandez J, Blakemore W, Brocchi E, Curry S, Domingo E, Fry E, Abu-Ghazaleh R, King A, Newman J et al (1994) The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2:123–139

    CAS  PubMed  Google Scholar 

  84. Lea S, Abu-Ghazaleh R, Blakemore W, Curry S, Fry E, Jackson T, King A, Logan D, Newman J, Stuart D (1995) Structural comparison of two strains of foot-and-mouth disease virus subtype O1 and a laboratory antigenic variant, G67. Structure 3:571–580

    CAS  PubMed  Google Scholar 

  85. Li C, Wang JC, Taylor MW, Zlotnick A (2012) In vitro assembly of an empty picornavirus capsid follows a dodecahedral path. J Virol 86:13062–13069

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Li W, Ross-Smith N, Proud CG, Belsham GJ (2001) Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identification of the eIF4AI cleavage site. FEBS Lett 507:1–5

    CAS  PubMed  Google Scholar 

  87. Li Z, Yin X, Yi Y, Li X, Li B, Lan X, Zhang Z, Liu J (2011) FMD subunit vaccine produced using a silkworm-baculovirus expression system: protective efficacy against two type Asia1 isolates in cattle. Veterinary Microbiol 149:99–103

    CAS  Google Scholar 

  88. Lin JY, Chen TC, Weng KF, Chang SC, Chen LL, Shih SR (2009) Viral and host proteins involved in picornavirus life cycle. J Biomed Sci 16:103

    PubMed Central  PubMed  Google Scholar 

  89. Logan D, Abu-Ghazaleh R, Blakemore W, Curry S, Jackson T, King A, Lea S, Lewis R, Newman J, Parry N et al (1993) Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362:566–568

    CAS  PubMed  Google Scholar 

  90. Lopez de Quinto S, Saiz M, de la Morena D, Sobrino F, Martinez-Salas E (2002) IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly(A) sequences. Nucleic Acids Res 30:4398–4405

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Lu G, Qi J, Chen Z, Xu X, Gao F, Lin D, Qian W, Liu H, Jiang H, Yan J, Gao GF (2011) Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. J Virol 85:10319–10331

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Lu Z, Bao H, Cao Y, Sun P, Guo J, Li P, Bai X, Chen Y, Xie B, Li D, Liu Z, Xie Q (2008) Protection of guinea pigs and swine by a recombinant adenovirus expressing O serotype of foot-and-mouth disease virus whole capsid and 3C protease. Vaccine 26(Suppl 6):G48–53

    CAS  PubMed  Google Scholar 

  93. Maree FF, Blignaut B, de Beer TA, Rieder E (2013) Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability. PLoS ONE 8:e61612

    PubMed Central  PubMed  Google Scholar 

  94. Martin-Acebes MA, Gonzalez-Magaldi M, Sandvig K, Sobrino F, Armas-Portela R (2007) Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology 369:105–118

    CAS  PubMed  Google Scholar 

  95. Martin-Acebes MA, Rincon V, Armas-Portela R, Mateu MG, Sobrino F (2010) A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid lability and confer resistance to acid-dependent uncoating inhibition. J Virol 84:2902–2912

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Martin-Acebes MA, Vazquez-Calvo A, Rincon V, Mateu MG, Sobrino F (2011) A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid resistance. J Virol 85:2733–2740

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Martinez MA, Verdaguer N, Mateu MG, Domingo E (1997) Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci USA 94:6798–6802

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Mason PW, Rieder E, Baxt B (1994) RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci USA 91:1932–1936

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Mason PW, Bezborodova SV, Henry TM (2002) Identification and characterization of a cis-acting replication element (cre) adjacent to the internal ribosome entry site of foot-and-mouth disease virus. J Virol 76:9686–9694

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Mason PW, Grubman MJ, Baxt B (2003) Molecular basis of pathogenesis of FMDV. Virus Res 91:9–32

    CAS  PubMed  Google Scholar 

  101. Mateo R, Luna E, Rincon V, Mateu MG (2008) Engineering viable foot-and-mouth disease viruses with increased thermostability as a step in the development of improved vaccines. J Virol 82:12232–12240

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Mateu MG, Valero ML, Andreu D, Domingo E (1996) Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effect on cell recognition. J Biol Chem 271:12814–12819

    CAS  PubMed  Google Scholar 

  103. Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patick AK, Zalman LS, Hendrickson TF, Love RA, Prins TJ, Marakovits JT, Zhou R, Tikhe J, Ford CE, Meador JW, Ferre RA, Brown EL, Binford SL, Brothers MA, DeLisle DM, Worland ST (1999) Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci USA 96:11000–11007

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Mayer C, Neubauer D, Nchinda AT, Cencic R, Trompf K, Skern T (2008) Residue L143 of the foot-and-mouth disease virus leader proteinase is a determinant of cleavage specificity. J Virol 82:4656–4659

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Miller LC, Blakemore W, Sheppard D, Atakilit A, King AM, Jackson T (2001) Role of the cytoplasmic domain of the beta-subunit of integrin alpha(v)beta6 in infection by foot-and-mouth disease virus. J Virol 75:4158–4164

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Moscufo N, Simons J, Chow M (1991) Myristoylation is important at multiple stages in poliovirus assembly. J Virol 65:2372–2380

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Nayak A, Goodfellow IG, Woolaway KE, Birtley J, Curry S, Belsham GJ (2006) Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication. J Virol 80:9865–9875

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Neff S, Sa-Carvalho D, Rieder E, Mason PW, Blystone SD, Brown EJ, Baxt B (1998) Foot-and-mouth disease virus virulent for cattle utilizes the integrin alpha(v)beta3 as its receptor. J Virol 72:3587–3594

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Norder H, De Palma AM, Selisko B, Costenaro L, Papageorgiou N, Arnan C, Coutard B, Lantez V, De Lamballerie X, Baronti C, Sola M, Tan J, Neyts J, Canard B, Coll M, Gorbalenya AE, Hilgenfeld R (2011) Picornavirus non-structural proteins as targets for new anti-virals with broad activity. Antiviral Res 89:204–218

    CAS  PubMed  Google Scholar 

  110. Nugent CI, Johnson KL, Sarnow P, Kirkegaard K (1999) Functional coupling between replication and packaging of poliovirus replicon RNA. J Virol 73:427–435

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Nurani G, Lindqvist B, Casasnovas JM (2003) Receptor priming of major group human rhinoviruses for uncoating and entry at mild low-pH environments. J Virol 77:11985–11991

    CAS  PubMed Central  PubMed  Google Scholar 

  112. O’Donnell V, LaRocco M, Duque H, Baxt B (2005) Analysis of foot-and-mouth disease virus internalization events in cultured cells. J Virol 79:8506–8518

    PubMed Central  PubMed  Google Scholar 

  113. O’Donnell V, Larocco M, Baxt B (2008) Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol 82:9075–9085

    PubMed Central  PubMed  Google Scholar 

  114. Pacheco JM, Brum MC, Moraes MP, Golde WT, Grubman MJ (2005) Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. Virology 337:205–209

    CAS  PubMed  Google Scholar 

  115. Parker WB (2005) Metabolism and antiviral activity of ribavirin. Virus Res 107:165–171

    CAS  PubMed  Google Scholar 

  116. Patick AK, Binford SL, Brothers MA, Jackson RL, Ford CE, Diem MD, Maldonado F, Dragovich PS, Zhou R, Prins TJ, Fuhrman SA, Meador JW, Zalman LS, Matthews DA, Worland ST (1999) In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother 43:2444–2450

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Pegna M, Molinari H, Zetta L, Gibbons WA, Brown F, Rowlands D, Siligardi G, Mascagni P (1996) The solution structure of the immunodominant and cell receptor binding regions of foot-and-mouth disease virus serotype A, variant A. J Peptide Sci 2:75–90

    CAS  Google Scholar 

  118. Petit MC, Benkirane N, Guichard G, Du AP, Marraud M, Cung MT, Briand JP, Muller S (1999) Solution structure of a retro-inverso peptide analogue mimicking the foot-and-mouth disease virus major antigenic site. Structural basis for its antigenic cross-reactivity with the parent peptide. J Biol Chem 274:3686–3692

    CAS  PubMed  Google Scholar 

  119. Piccone ME, Pauszek S, Pacheco J, Rieder E, Kramer E, Rodriguez LL (2009) Molecular characterization of a foot-and-mouth disease virus containing a 57-nucleotide insertion in the 3′ untranslated region. Arch Virol 154:671–676

    CAS  PubMed  Google Scholar 

  120. Porta C, Kotecha A, Burman A, Jackson T, Ren J, Loureiro S, Jones IM, Fry EE, Stuart DI, Charleston B (2013) Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathog 9:e1003255

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Reeve R, Blignaut B, Esterhuysen JJ, Opperman P, Matthews L, Fry EE, de Beer TA, Theron J, Rieder E, Vosloo W, O’Neill HG, Haydon DT, Maree FF (2010) Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus. PLoS Comput Biol 6:e1001027

    PubMed Central  PubMed  Google Scholar 

  122. Reguera J, Carreira A, Riolobos L, Almendral JM, Mateu MG (2004) Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid. Proc Natl Acad Sci USA 101:2724–2729

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Rieder E, Berinstein A, Baxt B, Kang A, Mason PW (1996) Propagation of an attenuated virus by design: engineering a novel receptor for a noninfectious foot-and-mouth disease virus. Proc Natl Acad Sci USA 93:10428–10433

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Rodriguez PL, Carrasco L (1993) Poliovirus protein 2C has ATPase and GTPase activities. J Biol Chem 268:8105–8110

    CAS  PubMed  Google Scholar 

  125. Rodriguez Pulido M, Sobrino F, Borrego B, Saiz M (2009) Attenuated foot-and-mouth disease virus RNA carrying a deletion in the 3′ noncoding region can elicit immunity in swine. J Virol 83:3475–3485

    PubMed Central  PubMed  Google Scholar 

  126. Rueckert RR, Wimmer E (1984) Systematic nomenclature of picornavirus proteins. J Virol 50:957–959

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Sa-Carvalho D, Rieder E, Baxt B, Rodarte R, Tanuri A, Mason PW (1997) Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71:5115–5123

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Saiz M, Gomez S, Martinez-Salas E, Sobrino F (2001) Deletion or substitution of the aphthovirus 3′ NCR abrogates infectivity and virus replication. J Gen Virol 82:93–101

    CAS  PubMed  Google Scholar 

  129. Samuilova O, Krogerus C, Fabrichniy I, Hyypia T (2006) ATP hydrolysis and AMP kinase activities of nonstructural protein 2C of human parechovirus 1. J Virol 80:1053–1058

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Scotti N, Rybicki EP (2013) Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 12:211–224

    CAS  PubMed  Google Scholar 

  131. Seipelt J, Guarne A, Bergmann E, James M, Sommergruber W, Fita I, Skern T (1999) The structures of picornaviral proteinases. Virus Res 62:159–168

    CAS  PubMed  Google Scholar 

  132. Serrano P, Pulido MR, Saiz M, Martinez-Salas E (2006) The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA-RNA interactions with the 5′ end region. J Gen Virol 87:3013–3022

    CAS  PubMed  Google Scholar 

  133. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    CAS  PubMed  Google Scholar 

  134. Sweeney TR, Roque-Rosell N, Birtley JR, Leatherbarrow RJ, Curry S (2007) Structural and mutagenic analysis of foot-and-mouth disease virus 3C protease reveals the role of the beta-ribbon in proteolysis. J Virol 81:115–124

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Sweeney TR, Cisnetto V, Bose D, Bailey M, Wilson JR, Zhang X, Belsham GJ, Curry S (2010) Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism. J Biol Chem 285:24347–24359

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Teterina NL, Gorbalenya AE, Egger D, Bienz K, Rinaudo MS, Ehrenfeld E (2006) Testing the modularity of the N-terminal amphipathic helix conserved in picornavirus 2C proteins and hepatitis C NS5A protein. Virology 344:453–467

    CAS  PubMed  Google Scholar 

  137. Thompson AA, Peersen OB (2004) Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23:3462–3471

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Tuthill TJ, Harlos K, Walter TS, Knowles NJ, Groppelli E, Rowlands DJ, Stuart DI, Fry EE (2009) Equine rhinitis A virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog 5:e1000620

    PubMed Central  PubMed  Google Scholar 

  139. Vakharia VN, Devaney MA, Moore DM, Dunn JJ, Grubman MJ (1987) Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts. J Virol 61:3199–3207

    CAS  PubMed Central  PubMed  Google Scholar 

  140. van Vlijmen HW, Curry S, Schaefer M, Karplus M (1998) Titration calculations of foot-and-mouth disease virus capsids and their stabilities as a function of pH. J Mol Biol 275:295–308

    PubMed  Google Scholar 

  141. Verdaguer N, Mateu MG, Andreu D, Giralt E, Domingo E, Fita I (1995) Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J 14:1690–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Verdaguer N, Mateu MG, Bravo J, Domingo E, Fita I (1996) Induced pocket to accommodate the cell attachment Arg-Gly-Asp motif in a neutralizing antibody against foot-and-mouth-disease virus. J Mol Biol 256:364–376

    CAS  PubMed  Google Scholar 

  143. Verdaguer N, Sevilla N, Valero ML, Stuart D, Brocchi E, Andreu D, Giralt E, Domingo E, Mateu MG, Fita I (1998) A similar pattern of interaction for different antibodies with a major antigenic site of foot-and-mouth disease virus: implications for intratypic antigenic variation. J Virol 72:739–748

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Verdaguer N, Schoehn G, Ochoa WF, Fita I, Brookes S, King A, Domingo E, Mateu MG, Stuart D, Hewat EA (1999) Flexibility of the major antigenic loop of foot-and-mouth disease virus bound to a Fab fragment of a neutralising antibody: structure and neutralisation. Virology 255:260–268

    CAS  PubMed  Google Scholar 

  145. Verlinden Y, Cuconati A, Wimmer E, Rombaut B (2000) Cell-free synthesis of poliovirus: 14S subunits are the key intermediates in the encapsidation of poliovirus RNA. J Gen Virol 81:2751–2754

    CAS  PubMed  Google Scholar 

  146. Witwer C, Rauscher S, Hofacker IL, Stadler PF (2001) Conserved RNA secondary structures in Picornaviridae genomes. Nucleic acids Res 29:5079–5089

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Wu Y, Lou Z, Miao Y, Yu Y, Dong H, Peng W, Bartlam M, Li X, Rao Z (2010) Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China. Protein Cell 1:491–500

    CAS  PubMed  Google Scholar 

  148. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155

    CAS  PubMed  Google Scholar 

  149. Ye Y, Yan G, Luo Y, Tong T, Liu X, Xin C, Liao M, Fan H (2013) Quantitative proteomics by amino acid labeling in foot-and-mouth disease virus (FMDV)-infected cells. J Proteome Res 12:363–377

    CAS  PubMed  Google Scholar 

  150. Zunszain PA, Knox SR, Sweeney TR, Yang J, Roque-Rosell N, Belsham GJ, Leatherbarrow RJ, Curry S (2010) Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. J Mol Biol 395:375–389

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Science and Technology Support Program (2013BAD12B00), International Science & Technology Cooperation Program of China (2014DFA31890), the Fundamental Research Funds for the Chinese Academy of Agricultural Sciences (2013ZL035), Gansu Provincial Sci. & Tech. Department (No. 1102NKDA033; No. 1102NKDA034; No. 1104WCGA185), and National Natural Science Foundation of China (No. 31100688; No. 31101838).

Conflict of interest

The authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Qi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SC., Guo, HC. & Sun, SQ. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol 160, 1–16 (2015). https://doi.org/10.1007/s00705-014-2278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2278-x

Keywords

Navigation